001     856857
005     20210129235418.0
024 7 _ |a 10.1128/AAC.01146-18
|2 doi
024 7 _ |a 0066-4804
|2 ISSN
024 7 _ |a 1070-6283
|2 ISSN
024 7 _ |a 1098-6596
|2 ISSN
024 7 _ |a 2128/21836
|2 Handle
024 7 _ |a pmid:30348662
|2 pmid
024 7 _ |a WOS:000454140200008
|2 WOS
024 7 _ |a altmetric:50261949
|2 altmetric
037 _ _ |a FZJ-2018-06196
082 _ _ |a 610
100 1 _ |a Tanabe, Koichi
|0 P:(DE-HGF)0
|b 0
245 _ _ |a FK506 resistance of Saccharomyces cerevisiae Pdr5 and Candida albicans Cdr1 involves mutations in the transmembrane domains and extracellular loops
260 _ _ |a Washington, DC
|c 2019
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552470740_13869
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The 23-membered-ring macrolide tacrolimus, a commonly used immunosuppressant, also known as FK506, is a broad-spectrum inhibitor and an efflux pump substrate of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters. Little, however, is known about the molecular mechanism by which FK506 inhibits PDR transporter drug efflux. Thus, to obtain further insights we searched for FK506-resistant mutants of Saccharomyces cerevisiae cells overexpressing either the endogenous multidrug efflux pump, Pdr5, or its Candida albicans orthologue, Cdr1. A simple, but powerful, screen gave 69 FK506-resistant mutants with, between them, 72 mutations in either Pdr5 (37) or Cdr1 (35). Twenty mutations were in just three Pdr5/Cdr1 equivalent amino acid positions T550/T540 and T552/S542 of extracellular loop 1 (EL1) and A723/A713 of EL3. Sixty of the 72 mutations were either in the ELs or the extracellular halves of individual transmembrane spans (TMSs), while 11 mutations were found near the centre of individual TMSs, mostly in predicted TMS-TMS contact points, and only two mutations were in the cytosolic nucleotide-binding domains of Pdr5. We propose that FK506 inhibits Pdr5 and Cdr1 drug efflux by slowing transporter opening and/or substrate release, and that FK506-resistance of Pdr5/Cdr1 drug efflux is achieved by modifying critical intramolecular contact points that, when mutated, enable the co-transport of FK506 with other pump substrates. This may also explain why the 35 Cdr1 mutations that caused FK506-insensitivity of fluconazole efflux differed from the 13 Cdr1 mutations that caused FK506-insensitivity of cycloheximide efflux.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Forschergruppe Gohlke (hkf7_20170501)
|0 G:(DE-Juel1)hkf7_20170501
|c hkf7_20170501
|f Forschergruppe Gohlke
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bonus, Michele
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tomiyama, Susumu
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Miyoshi, Kunji
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nagi, Minoru
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Niimi, Kyoko
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Chindamporn, Ariya
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 7
|u fzj
700 1 _ |a Schmitt, Lutz
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Cannon, Richard D.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Niimi, Masakazu
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
700 1 _ |a Lamping, Erwin
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1128/AAC.01146-18
|g p. AAC.01146-18aac;AAC.01146-18v1
|0 PERI:(DE-600)1496156-8
|n 1
|p e01146-18
|t Antimicrobial agents and chemotherapy
|v 63
|y 2019
|x 1098-6596
856 4 _ |u https://juser.fz-juelich.de/record/856857/files/Clean%20copy%20of%20revision1-1.pdf
|y Published on 2018-12-21. Available in OpenAccess from 2019-06-21.
909 C O |o oai:juser.fz-juelich.de:856857
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANTIMICROB AGENTS CH : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 1
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a I:(DE-Juel1)NIC-20090406
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21