
Enabling callback-driven runtime introspection via MPI_T
Marc-André Hermanns

JARA-HPC, 52425 Jülich, Germany

Jülich Supercomputing Centre

Forschungszentrum Jülich GmbH

52425 Jülich, Germany

m.a.hermanns@fz-juelich.de

Nathan T. Hjlem

HPC Division

Los Alamos National Laboratory

Los Alamos, NM, USA

hjelmn@lanl.gov

Michael Knobloch

Jülich Supercomputing Centre

Forschungszentrum Jülich GmbH

52425 Jülich, Germany

m.knobloch@fz-juelich.de

Kathryn Mohror

Center for Applied Sci. Comp.

Lawrence Livermore Nat’l Lab.

Livermore, CA, USA

kathryn@llnl.gov

Martin Schulz

Fakultät für Informatik

Technische Universität München

85748 Garching, Germany

schulzm@in.tum.de

ABSTRACT
Understanding the behavior of parallel applications that use the

Message Passing Interface (MPI) is critical for optimizing commu-

nication performance. Performance tools for MPI currently rely on

the PMPI Profiling Interface or the MPI Tools Information Inter-

face, MPI_T, for portably collecting information for performance

measurement and analysis. While tools using these interfaces have

proven to be extremely valuable for performance tuning, these in-

terfaces only provide synchronous information, i.e., when an MPI

or an MPI_T function is called. There is currently no option for

collecting information about asynchronous events from within the

MPI library. In this work we propose a callback-driven interface

for event notification from MPI implementations. Our approach is

integrated in the existing MPI_T interface and provides a portable

API for tools to discover and register for events of interest. We

demonstrate the functionality and usability of the interface with a

prototype implementation in Open MPI, a small logging tool (MEL)

and the measurement infrastructure Score-P.

CCS CONCEPTS
• General and reference→Measurement; Performance; • Soft-
ware and its engineering→ Software libraries and repositories;

KEYWORDS
MPI, callback functions, runtime introspection

ACM Reference Format:
Marc-AndréHermanns, Nathan T. Hjlem,Michael Knobloch, KathrynMohror,

and Martin Schulz. 2018. Enabling callback-driven runtime introspection

via MPI_T. In 25th European MPI Users’ Group Meeting (EuroMPI ’18), Sep-
tember 23–26, 2018, Barcelona, Spain. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3236367.3236370

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6492-8/18/09. . . $15.00

https://doi.org/10.1145/3236367.3236370

1 INTRODUCTION
An in-depth understanding of parallel application behavior in High-

Performance Computing (HPC) is key to performance optimization.

The vast majority of HPC parallel applications use the Message

Passing Interface (MPI) [28] for distributed-memory programming.

Although the use of MPI is ubiquitous, its optimal use is often not

straightforward and the cause of potential performance bottlenecks

in many applications.

For decades, MPI developers have used performance measure-

ment and analysis tools to gain insight into application behavior.

Performance tools collect a wide variety of information about appli-

cations during execution, including time spent in different activities,

e.g., function calls, application phases, or particular lines of code,

and communication and synchronization details, e.g., communi-

cation patterns between processes and the overhead of particular

synchronization operations. Using this collected information, de-

velopers can identify the performance bottlenecks in their code and

target their optimization efforts at the most severe performance

problems in order to achieve the highest performance gains.

The current MPI Standard offers two interfaces for tools to ex-

tract information from an MPI application, namely PMPI, the MPI

Profiling Interface, and MPI_T, the MPI Tool Information Interface.

The concept of PMPI is simple and has been used successfully for

decades; tool developers write libraries that intercept selected (or

all) MPI calls in an application execution and perform a wide variety

of tasks, including measuring the time spent in MPI calls, collecting

communication details (such as bytes transferred or communication

partners), or replacing a communication pattern altogether, e.g.,

replacing a broadcast operation with point-to-point calls.

While PMPI has proven to be powerful, information about the

internal workings of the MPI library were not available to tools

with PMPI. Thus, in MPI 3.0 the MPI_T interface was added to

the standard to enable an MPI implementation to expose selected

details about its configuration and execution. Through this interface,

tools or applications can query and possibly set MPI-internal and

MPI implementation specific configuration variables. Examples of

such variables could be the eager limit for messages or the type of

collective algorithm used for particular operations. Additionally,

tools can obtain performance data recorded within the MPI library.

Examples for the latter could be the amount of memory used in

https://doi.org/10.1145/3236367.3236370
https://doi.org/10.1145/3236367.3236370

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Hermanns et al.

MPI-internal buffers or the length of message queues. In both cases,

the MPI implementation can choose what to expose and in which

form. This was a key element in the design of the interface as to not

restrict the implementation options of individual libraries. While

this leads to a certain degree of vagueness, as tools cannot rely on

the existence of particular variables or measurements, MPI_T has

proven to be quite popular and several approaches have shown

the benefit of using MPI implementation internal information for

tuning MPI applications [5, 10, 11, 14, 25, 26].

While the introduction of MPI_T improved the performance

information available to tools, one area is still missing: information

about event occurrences within MPI implementations. To mitigate

this gap, we propose to extend the MPI_T interface with a new

callback-driven mechanism to notify tools of events that occur

during execution. Using the event interface, a tool can register

for and be notified of events that the MPI implementation exposes.

These events could include the progress of communication activities,

the time the actual transfer of a non-blocking send operation starts,

or the time of the message arrival on the receiver side. Such events

could be useful in diagnosing performance issues of applications,

e.g., by comparing the non-blocking message arrival time with the

time of the post of the matching wait operation. As with MPI_T,

the number and types of events exposed is MPI implementation

dependent, allowing for flexibility in the implementation.

Here, we present MPI_T Events, a callback-driven extension

to MPI_T which is currently being discussed for inclusion in the

MPI Standard. As this extension is currently not a part of the MPI

Standard, we anticipate that (if accepted) the final API for MPI_T

Events may differ somewhat from what is presented here. However,

our intent is to describe the state of the interface as of this writing

and to explore the design choices we have faced in our efforts, both

to demonstrate the feasibility of the proposed API as well as to give

the larger MPI community an option to provide feedback.

Our contributions in this paper include:

• A detailed description of the design of the MPI_T Events

interface, including a novel transparent buffering approach

and a discussion of design trade-offs;

• A prototype implementation in Open MPI;

• A prototypical evaluation of the interface with an event

logger tool; and

• An evaluation of the interface with the Score-P [19] mea-

surement infrastructure.

The remainder of this paper is structured as follows. Section 2

provides background and related work. Section 3 describes the

API and discusses design decisions. Section 4 details the prototype

implementation in Open MPI. Section 5 presents early results, and

Section 6 concludes with a brief look at future work.

2 BACKGROUND AND RELATEDWORK
2.1 Event Information in MPI
In the current MPI Standard, tool developers have two portable

mechanisms to obtain information on the communication behavior

of an MPI program: either using wrappers through the PMPI inter-

face or by explicitly querying performance information through

MPI_T. However, the drawback of both approaches is that data

collection is limited to synchronous information, i.e., when the user

application calls an MPI routine that is then intercepted by PMPI

wrappers or when a tool library explicitly calls into MPI_T.

Performance tool developers have long stated the need for cap-

turing asynchronous MPI event information [2, 20]. By gaining

insight to the relative timings of events as they occur in an MPI

library, one can understand the order of events, track causality, and

with that uncover additional performance problems not visible in

synchronous data. For example, if a message is received by the MPI

library and the user code has not yet posted a matching receive

call, the message will be placed in the unexpected message queue.

By knowing the relative time between the arrival of the message

and the posting of the receive call, one can infer potential causes.

For example, this could be an indicator of load imbalance that is

causing the receiving process to post the receive call late.

2.2 Event Interfaces for Tools
The de facto approach for propagating event information to tools

is with callback-driven interfaces: the system being monitored (in

our case the MPI library) notifies tools of events near the time of

their occurrence in order to indicate state changes in the system.

Such interfaces are available or are being designed for a variety

of systems. For Unified Parallel C (UPC) [29] and the underlying

GASNet [1] library, the callback-driven interface GASP [21] pro-

vides information for tools such as the Parallel Performance Wizard

(PPW) [22, 27]. The upcoming tools interface [8] for OpenMP [24]

will also provide a callback-driven tool interface.

2.3 PERUSE
There was an earlier effort to introduce event notification into

MPI, called PERUSE [6, 15]. PERUSE was an international effort to

design a callback interface to collect internal information from MPI

implementations. PERUSE was implemented in Open MPI [16] and

used by selected projects in the MPI community [3, 4, 17].

The design of PERUSE differs from our events interface as it

defines several specific events as part of its interface, like “mes-

sage activation” and “message transfer initiation” that refer to the

times when MPI starts processing a message request and when it

actually begins the data transfer, respectively. PERUSE defined a

large number of events related to message transfers and message

queues, and the draft document contains event definitions for col-

lective communications, MPI I/O, one-sided communication and

dynamic process creation. The PERUSE specification states that

PERUSE-compliant MPI implementations are required to support

all PERUSE functions and data types. However, it also states that if

a particular defined event does not directly correlate to a particular

MPI implementation or would incur undue overhead to support,

implementors are free to ignore that event.

Ultimately, the PERUSE specification was not standardized. The

main criticism of the interface was that supporting the defined MPI

internal events could lead to performance bottlenecks or restric-

tions for some MPI implementations if their design doesn’t follow

the PERUSE concepts. Although the interface specified that imple-

mentations could ignore problematic events, there was concern that

in order to be considered competitively in procurement bids, MPI

implementors would need to support the full PERUSE interface.

Enabling callback-driven runtime introspection via MPI_T EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

Our design of the MPI_T events interface is in direct response to

this criticism; as with the existing MPI_T interface, no events are

pre-defined or enforced. Instead, we provide a query interface for

tools to discover the events that an MPI implementation supports.

3 DESIGN
The design of our callback-driven events interface integrates cleanly

with the MPI_T interface. Following the approach of MPI_T for

performance and configuration variables, we do not specify any

events that must be supported by MPI implementations, but instead

leave the choice of which event to provide to the MPI implementor.

The MPI_T Events interface then provides functions for tools to

discover available events and to register callbacks for them. This

allows MPI implementors complete freedom to choose the events

to be exposed and how to implement them in their library. As with

MPI_T, the proposed events API can be used whenever MPI_T is

active, which can be before MPI_Init and after MPI_Finalize.
In Table 1 we show the proposed API supporting our design.

The functions of the API fall into five categories: (1) Querying the

availability of events and their descriptions (2) Callback registration

management (3) Reading event-instance data within a callback func-

tion (4) Reading event-instance metadata within a callback function

(5) Querying information on event sources. MPI implementations

are not required to propagate event occurrences to callbacks imme-

diately, but can buffer events internally. Our goal with this design

choice is to reduce the potential for prohibitively high overhead

within MPI implementations for supporting immediate notification

of events. Furthermore, the API introduces the notion of informa-

tion sources for specific event instances. A source might be internal

to the MPI implementation, e.g., internal message queues, or exter-

nal, e.g., a network device. By introducing the concept of sources,

we enable transparent buffering of events from sources with dis-

parate control flows, without the need to enforce event ordering

across those flows (see Section 3.6).

3.1 Query Event Type Information
The API for querying event type information follows the same

approach as the API for querying MPI_T variables. A subtle dif-

ference is that for events we query for available event types in the

information gathering phase. Then, during execution we collect

information about specific events or event instances that belong
to the queried event types. Users query the current number, N ,

of available event types via MPI_T_event_get_num. Then, by call-

ing MPI_T_event_get_info, tools can query detailed information

about specific event types provided by the specific MPI implemen-

tation identified by its index between 0 and N − 1. The event-type

information returned to the user comprises:

Name A string that uniquely identifies the event type among all

other event types available.

Description An optional string documenting the event type.

Verbosity Level The verbosity level of the event type.

Event Type Structure A set of arguments describing the struc-

ture of the event data, including element data types and

displacements, as well as the number of elements.

Enumeration Type An optional MPI_T enumeration describing

all elements of the event type.

Bound Object The type of MPI object (if any) to which the event

type must be bound.

MPI implementations can add new event types as they become

available during execution, e.g., through dynamic loading of com-

ponents; however, they cannot change event type indices or delete

indices of event types once they have been added to the set.

The name, description, and verbosity have the same semantics

as with MPI_T variables. Specifically, the name uniquely identifies a
given event type among all available event types and must identify

equivalent event types across all connected MPI processes. The

description clear-text string is optional, but can be used to convey

semantic information for event types to users. Thus, a high-quality

implementation should provide descriptions for event types to aid

users in understanding the information provided. The verbosity
allows users to judge whether a specific event type represents high-

or low-level information, e.g., whether the event type is intended

to be helpful for application users or whether it is intended for

specialized uses intended for MPI implementors.

Event types can be complex and comprised of multiple elements

of different types. Therefore, returning a single basic datatype, as

with MPI_T performance variables, will not suffice, and we rep-

resent them conceptually with an event type structure. The event
type structure comprises (1) the number of elements contained

in the event type, (2) an array of MPI basic datatypes allowed for

MPI_T describing the type of each element, (3) an array of displace-

ments to identify the location of each element in the event buffer

as provided by MPI_T_event_copy, and (4) the extent (including

potential padding among elements) of such a buffer. We use this

approach instead of using MPI derived datatypes directly, as MPI_T

may be initialized and used before MPI is initialized and, thus, the

full MPI type system may not be available during tool initialization.

An optional enumeration type provides additional information

about the individual elements of the event type. The intent is to

allow performance tools to harvest specific element descriptions in

machine accessible form, rather than parsing the natural language

of the description text for element descriptions. For example, an

event type that occurs when an incoming two-sided message is

matched may return the tag and size of the incoming message. In

this case the enumerator for this event type could return the strings

“tag” and “size”.

Some event types may be required to be bound to a specific

MPI handle as a bound object at event callback registration. Binding
event callbacks to specific MPI objects allows for more refined event

collection. For example, a tool could collect message queue events

for a particular MPI communicator instead of all communicators.

As stated previously, event types are identified by their index

in the set of all currently available event types, from 0 to N − 1.

However, as is true for variables in the MPI_T interface, event

indices may change between executions, and thus an index is not a

reliable identifier for events. However, if the unique name of the

event type is known to the user, a call to MPI_T_event_get_index
will provide the index of the associated event type for that execution.

This avoids an iterative search of the full set of event types for a

specific, known event type. If no event type is available with the

given name, the call returns with an appropriate error code. Also,

because event types may become available at different stages of

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Hermanns et al.

Table 1: List of functions of the proposed MPI_T Events API. The return type is always int, returning an MPI error code with
the same semantics and scope as existing MPI_T functions.

Name Arguments

Event type information

MPI_T_event_get_num int* num_events

MPI_T_event_get_info int event_index, char* name, int* name_len, int* verbosity, MPI_Datatype* arrary_of_datatypes,
MPI_Aint* array_of_displacements, int* num_elements, MPI_T_enum* enum, MPI_Aint* extent,
char* description, int* description_len, int* bind

MPI_T_event_get_index const char* name, int* event_index

Callback registration management

MPI_T_event_handle_alloc int event_index, void* object_handle, void* user_data,
MPI_T_event_cb_function event_cb_function, MPI_T_event_registration* event_registration

MPI_T_event_handle_free MPI_T_event_registration event_registration, MPI_T_event_free_cb_function free_cb_function

MPI_T_event_set_dropped_handler MPI_T_event_registration event_registration,

MPI_T_event_dropped_cb_function dropped_cb_function

Reading event data

MPI_T_event_read MPI_T_event_instance event, int element_index, void* buffer, int size
MPI_T_event_copy MPI_T_event_instance event, void* buffer, int size

Reading event metadata

MPI_T_event_get_timestamp MPI_T_event_instance event, MPI_Count* event_timestamp

MPI_T_event_get_source MPI_T_event_instance event, int* source_index

Source handling

MPI_T_source_get_num int* num_sources

MPI_T_source_get_info int source_index, char* description, int* description_len, MPI_T_source_order* ordering,
MPI_Count* ticks_per_second

MPI_T_source_get_timestamp int source_index, MPI_Count* timestamp

execution, a tool may retry failed attempts to query the event type

index in case it becomes available.

3.2 Event Handle Management
In order to receive notifications of individual event occurrences of

a particular event type—called event instances—a tool must register

a callback function using MPI_T_event_handle_alloc 1
. The user

provides the following arguments to the registration call:

Index The index of the event type with which the callback function

is associated.

Bound Object Handle If needed, a valid MPI object handle to

bind to the event instances.

User Data User data that will be provided to the registered callback

function. This is intended to pass a pointer to user-controlled

memory, but a tool is free to choose what is actually passed.

Callback Function The callback function to call to process event

information with the given event type and MPI object.

Event Registration A handle for identifying this event type reg-

istration.

After successful event-callback registration, an event-registration
handle is returned. The handle is used subsequently for several

1
Note that the name of the call is chosen in symmetry to the existing functions

MPI_T_cvar_handle_alloc and MPI_T_pvar_handle_alloc within the MPI Tool In-

formation Interface.

purposes: (1) as input to each callback invocation; (2) for registering

a callback for handling information loss due to dropped events; and,

finally, (3) for de-registering the callback. The handle is used as

input to each callback because the same callback function can be

registered for multiple event types, and the handle differentiates

the event type for the particular invocation of the callback. Note

that multiple handles may exist for a given event type, but each

handle is associated with only one specific event type.

If multiple event registration handles exist for the same event

type and bound object, the corresponding event instance data is

provided to the callback function invocation of each of those han-

dles. This enables multiple tool libraries to register callbacks for

the available event types without further coordination.

By calling MPI_T_event_handle_free, a user initiates the deal-
location of an event registration handle and the de-registration

of the associated callback function. Because the API allows event

data to be transparently buffered and event callback invocations

to be postponed, the MPI implementation may not be able to guar-

antee that no event data corresponding to the event registration

handle is still buffered in the system at the time of the call to

MPI_T_event_handle_free. Thus, the user can provide a pointer

to a callback function of type MPI_T_event_free_cb_function
(see Table 2 and Section 3.3) that can free any resources allocated

by the tool associated with the handle. The callback function is

Enabling callback-driven runtime introspection via MPI_T EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

Table 2: List of all callback function types of the proposed MPI_T events API. All types have a return type of void.

Name Arguments

(*MPI_T_event_cb_function) MPI_T_event_instance event, MPI_T_event_registration event_registration,

MPI_T_event_cb_safety cb_safety, void* user_data
(*MPI_T_event_free_cb_function) MPI_T_event_registration event_registration, MPI_T_event_cb_safety cb_safety, void* user_data
(*MPI_T_event_dropped_cb_function) int count, MPI_T_event_registration event_registration, MPI_T_event_cb_safety cb_safety,

void* user_data

invoked when the MPI implementation can guarantee that no event

data for the corresponding handle is pending. After the return of

the callback function, the event registration handle is deallocated.

3.3 Event Callback Requirements
In Table 2, we show the C function prototypes for the callbacks in

our event interface. These include the (1) MPI_T_event_cb_func-
tion to be used for event instance notification; (2) MPI_T_event-
_free_cb_function to indicate completed handle deallocation af-

ter raising events potentially buffered before the corresponding call

to MPI_T_event_handle_free; (3) and MPI_T_event_dropped_cb-
_function to handle events that may have been dropped by the

MPI implementation.

The MPI implementation may invoke a callback function as soon

as it is registered. The API is designed to support different execution

contexts for the callback function. To enable the safe and flexible

handling of execution contexts both with respect to the tool and

the MPI implementation, the requirements for safe execution of

a specific callback invocation are communicated to the callback

function via the argument cb_safety.
The callback-safety requirements are defined in a hierarchy,

where each level includes all restrictions of its predecesor in the

hierarchy as listed below:

MPI_T_CALLBACK_REQUIRE_NONE The callback function does not

need to fulfill specific requirements.

MPI_T_CALLBACK_REQUIRE_MPI_RESTRICTED The use of MPI

within the callback function is restricted to a specific set of

functions.

MPI_T_CALLBACK_REQUIRE_THREAD_SAFE The callback function

must be be reentrant and thread safe.

MPI_T_CALLBACK_REQUIRE_ASYNC_SIGNAL_SAFE The callback

function must also be asynchronous signal safe.

The callback safety level MPI_T_CALLBACK_REQUIRE_NONE is the
lowest level, with no restrictions on the callback function. We pro-

vide this level as a defined minimum. While MPI implementations

may never actually provide this level to a callback in an HPC pro-

duction environment, we do not want to require an MPI implemen-

tation to enforce specific restrictions if they are not needed.

The callback safety level MPI_T_CALLBACK_REQUIRE_MPI_RE-
STRICTED restricts the use of MPI calls within a callback to (1) read-

ing event data, meta data, and event type information; (2) reading

source information; (3) managing event callback registrations; and

(4) starting, stopping and reading performance variables.

The level of MPI_T_CALLBACK_REQUIRE_THREAD_SAFE requires

the callback function to be reentrant and thread safe. This means a

developer needs to expect the execution of a callback to be inter-

rupted by any other callback function or happen concurrently with

any other callback function.

The most restrictive level, MPI_T_CALLBACK_REQUIRE_ASYNC-
_SIGNAL_SAFE, requires the callback to be safe inside a signal han-

dler.

The distinction in callback safety levels allows flexibility for the

MPI implementation to make decisions about the needed safety

for a specific callback invocation. It provides for interrupt-based

calling contexts which require the highest safety level, as well

as calling contexts via a function pointer from a controlled place

in the code, which have weaker safety requirements. The weaker

requirements may allow the tool to process the event data inside the

callback, without requiring any tool-internal buffering. Additionally,

allowing a callback to perform further processing than just copying

data to a buffer may enable completely self-contained tools that are

not dependent on an extra thread or using the PMPI interface to

process event information.

Because event information may be buffered by the MPI imple-

mentation and not returned immediately upon event occurrence,

the internal buffer space may be depleted at some point during the

execution. This could occur if event data is generated faster than

it is processed by calling the associated callback functions. As a

consequence, the MPI implementation will then have to drop some

event data. For some tools, the loss of event data may be problem-

atic, depending on the semantic connection of recorded and lost

events. Because of this we provide the MPI_T_event_dropped_cb-
_function callback to be called as soon as the MPI implementation

can inform the tool of the observed loss of data. The count argu-
ment tells the tool the count of event instances that were lost. The

counter itself only requires constant space for each event type so

it should not be a burden on MPI implementations. Depending on

the importance of the lost events, the tool may abort its execution,

warn the user, interpolate the missing data or simply ignore the

lost events. The event_registration argument provides the event

registration handle for the lost events. As with all other callback

functions, the required safety level and the associated pointer to

user data is provided.

3.4 Reading Event Data
Our MPI_T Events API provides two methods for extracting infor-

mation from within an event callback function once it is invoked,

namely (1) reading event data one element at a time and (2) copying

the event data as one opaque memory chunk for later processing.

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Hermanns et al.

Reading single elements. A tool can read single data elements

from the event data, represented by the opaque type MPI_T_event-
_instance, with a call to MPI_T_event_read. This enables users
to copy elements of the event instance to specific memory locations

directly. Furthermore, the user does not need to know the displace-

ment for the individual event elements, but can rely on the MPI

implementation to copy the element data from the correct memory

location. This enables MPI implementations to hide implementation

details from the callback (i.e., data layout at callback invocation)

and allows tools to copy one or more event data elements directly

to tool allocated variables, without the need to copy the event data

as a whole.

Copying the event data. In some calling contexts, a callback may

not be able to process individual data elements, e.g., due to re-

quired asynchronous signal safety. In this case, a tool may choose

to copy the event data as a whole (including potential padding)

into a user-provided buffer with a call to MPI_T_event_copy. The
user must provide a buffer with enough capacity to copy as many

bytes as returned in the extent argument of the call MPI_T_event-
_get_info for the corresponding event type. This enables tools to

postpone the processing of event data to a time off of the critical

path of the application and possibly to a more permissive execu-

tion context. While the event type structure is communicated in

the MPI_T_event_get_info call, access to the event data is only

possible through the event instance handle provided to the call-

back function. This enables MPI implementations to assemble the

event data buffer copied on the fly in the structure communicated

through array_of_datatypes and array_of_displacements of the MPI-
_T_event_get_info call. Of course, on-the-fly assembly contra-

dicts the premise of a fast copy, so implementations are encouraged

to implement the copy as efficiently as possible.

3.5 Reading Event Metadata
Instances stemming from all event types share some basic metadata

information, including a time stamp and the source of the event (see

Section 3.6). Additionally, event instances may include other meta-

data specific to their event type. In our design, we do not include

this part of the metadata in the specification. The primary reason

is flexibility; as new event types are supplied by MPI implementa-

tions, we do not need to update our API or type definitions. Further,

it enables MPI implementations to store the metadata separately

from the other event information (or generate it on the fly), and

the metadata may not be interesting for all tools, so it is left to the

tool to query information when necessary.

Observed Timestamp. The call to MPI_T_event_get_timestamp
returns the time stamp the event was observed by the MPI imple-

mentation, which may be significantly different to when the corre-

sponding callback is invoked. This enables MPI implementations

to (1) postpone the invocation of a callback to a more convenient

or less restricted execution time; and (2) provide multiple event

sources, including hardware components, to provide event data

without their explicit support to raise a signal or invoke a function

callback.

Users are not required to use MPI_T_event_get_timestamp to
obtain a time stamp and can use other timer routines; however

user-generated time stamps will always reflect the time of the call-

back invocation rather than the time when the event was initially

observed.

Decoupling internal event data generation and notification to

the user also allows for internal recording of high-frequency events

to burst buffers through the MPI implementation before calling

the individual callback functions. Control of such buffers could

be granted to the user through MPI_T control and performance

variables.

Event Source. Sources provide additional optional information on

the origination of the event data and callback invocation. The source

concept is introduced into the API to allow for flexible handling of

the chronological ordering requirements on event data by a tool, as

explained in the next section in more detail. As the event-instance

data available to a callback function of a specific registration handle

may stem from different sources for distinct invocations, a callback

function can query the source index for a specific event-instance

via MPI_T_event_get_source.

3.6 Event Sources
Allowing transparent buffering of events in our design may en-

able MPI implementations to support novel sources for generat-

ing events, e.g., network hardware. However, these sources may

not be capable of maintaining the necessary synchronization with

other sources for a centralized, coordinated event data buffer. This

presents a challenge for some tools and data formats, such as Score-

P [19] and OTF2 [9], which have strict requirements on event or-

dering for the events they record in a stream. Sorting and ordering

events from disparate sources during execution would be challeng-

ing and error-prone for both tools and MPI implementations. The

concept of sources reconciles these challenges with low overhead.

Here, a source is a tag attached to the event data that identifies or-

dered event sub-streams from the unordered combination of event

callback invocations from multiple unsynchronized data sources.

This means, instead of attempting to coordinate multiple software

and hardware components to provide a single chronologically or-

dered stream of events, an MPI implementation can supply multiple

sub-streams identified with source tags, where ordering can be

guaranteed to a tool. Generally speaking an MPI implementation

should create a separate source for each control flow that generates

event data, e.g., the main thread, a progress thread, a network card.

Users can query the number of currently available sources any

time via MPI_T_source_get_num and query detailed information

on a specific source via MPI_T_source_get_info. The detailed

information query returns (1) description of the source, (2) the or-

dering guarantees of the source, and (3) the number of ticks the

timestamp of this source advances per second. The ordering guaran-

tee can bei either MPI_T_SOURCE_ORDERED for guaranteed chrono-

logical order and MPI_T_SOURCE_UNORDERED otherwise. This al-

lows MPI implementations to provide event information even from

sources where ordering cannot be guaranteed or only with substan-

tial overhead, and inform the tool accordingly. The tool can then

choose how to handle the unordered source. Nevertheless, an MPI

implementation should strive to keep the number of unordered

sources low.

Enabling callback-driven runtime introspection via MPI_T EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

The time stamp returned by MPI_T_event_get_timestamp is

a count of ticks since some time in the past. Different sources

may report different time stamps for the same time in the past.

Therefore time stamps of different sources may not be directly

comparable without translation into a common time format. How-

ever, a user can query the current time stamp of a source via

MPI_T_source_get_timestamp. In combination with a common

reference time of the same timestamp and the number of ticks per

seconds reported for the source, any later time stamp of that source

can be translated to the common time format easily.

4 IMPLEMENTATION
To evaluate the proposed MPI_T Events interface, we implemented

it in Open MPI. The authors’ familiarity with the implementation,

the existing PERUSE implementation and the modular design of

Open MPI made it well suited for implementing this prototype, but

the results should generalize to other MPI implementations as well,

especially those with a robust MPI_T support.

4.1 Open MPI
Open MPI is designed around the concept of a Modular Component

Architecture, know as the MCA. At a high level, the implementa-

tion is split into three layers; the Open Platform Abstraction Layer

(OPAL), the Open Run-Time Layer (ORTE) and the Open MPI Layer

(OMPI). OPAL implements the core of the MCA. Each layer encom-

passes multiple interfaces known as frameworks, which are then

each implemented in the form of one or components.

The OPAL layer includes the code responsible for implementing

both performance and configuration variables exposed by the ex-

isting MPI_T interface, as this allows variables to be exposed from

any of the layers in the Open MPI implementation. The core of

the prototype event-driven extension to MPI_T is therefore also

implemented in the same layer.

The new event support in Open MPI consists of both internal

and external facing APIs. The internal calls handle the registration,

de-registration, and invocation of event instances. The external-

facing calls handle all the functions necessary to implementing the

new MPI_T Events API calls as specified earlier in Table 1.

We expect that, as more internal event information is exposed via

the internal event registration mechanism, there will be additional

overhead, possibly even on the critical path. In our implementation

we therefore attempted to mitigate as much of this overhead as

possible. This includes the use of low-overhead, single conditional,

inline functions for the invocation of event instances and a handle

allocation callback function that can be specified at event registra-

tion time. The handle allocation callback is called when the tool

calls MPI_T_event_handle_alloc. This allows the component im-

plementing a particular event to defer some of the overhead of the

event to a point when a tool is attached to the event. The goal of

this design is to allow all events to be compiled into the imple-

mentation with minimal overhead, and hence be always present

without switching library versions. The alternative would be to

conditionally compile support for these event types, but this would

reduce the usefulness of the implementation.

4.2 Events
For the initial implementation of the MPI_T Events prototype we fo-

cused on implementing event types to cover two-sided (send/recv)

and one-sided communication. The two-sided event types were im-

plemented in the ob1 Point-to-point Management Layer (PML) com-

ponent and cover the complete set of events that were implemented

to support PERUSE. One-sided events were implemented to cover

network operations in the ugni Byte Transport Layer (BTL) [13]
component. These event types indicate the initiation or completion

of a one-sided (i.e., put, get or Atomic Memory Operation (AMO))
operation. The one-sided events were added to assist in the eval-

uation of Open MPI on Cray systems when using the RMA-MT

benchmark suite [7]. Table 3 provides a complete list of the events

exposed in the prototype implementation.

5 CASE STUDIES
To demonstrate the use of the MPI_T Events, we provide several

examples of smaller case studies in this section. Their purpose is to

show how individual parts of the API can be used to obtain generic

or specific performance-relevant information.

5.1 MEL—MPI_T Events Logger
We developed the MPI_T Events Logger library (MEL) as a prototyp-

ical example of a generic events logger and extended it with basic

message queue profiling capabilities. MEL is a profiling library that

employs both the PMPI andMPI_T interfaces to obtain performance

relevant information. As described in Section 3, event types can

either be unbound (i.e., not tied to a specific object) or bound (i.e.,

tied to a specific object handle such as a specific communicator).

Handles for unbound event types can be allocated once during

the initialization of the measurement system. Handles for bound

event types need to be allocated anew for each newly created object

handle. For that purpose, MEL intercepts all MPI calls that create

new handles. As the Open MPI prototype currently only supports

event types bound to communicators, the MEL prototype used for

this paper only intercepts communicator handle creation routines.

At startup, MEL allocates event handles for event types bound to

communicators for the implicitly defined communicator handles

MPI_COMM_WORLD and MPI_COMM_SELF. In the default behavior, dur-

ing executionMEL evaluates the environment variable MEL_EVENTS,
which may contain a list of event type names separated by comma,

colon, semicolon, or spaces. If the variable is unset or empty, MEL

will query all event types available at the end of the execution and

dump the gathered information. If the variable is set, MEL tries

to allocate handles for all events types listed. The overhead intro-

duced by MEL and the MPI_T event callbacks is negligible, in our

measurements we observed an overhead of less than 1 %.

5.1.1 Generic Events Logging. Using a generic event callback for
all event types, MEL uses the information available on the struc-

ture of the event type to query and print the information, without

understanding specific elements of the event type and their seman-

tics. While this does not enable automatic processing of events

during execution—it relies on the user to interpret the gathered

information—it showcases that it is possible for a simple tool to

generate useful event information without undue complexity.

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Hermanns et al.

Table 3: List of events exposed by the prototype MPI_T events implemenation in Open MPI

Event Name Binding Description Event Data

pml/ob1 Events

pml_ob1_message_arrived MPI Comm. Message arrived for match Communicator ID, Source rank, Tag,

Sequence number

pml_ob1_search_posted_begin MPI Comm. Starting search of the posted receive

queue

Source rank, Tag

pml_ob1_search_posted_end MPI Comm. Finished search of the posted receive

queue

Source rank, Tag

pml_ob1_search_unexpected_begin MPI Comm. Starting search of the unexpected

message queue

Request pointer

pml_ob1_search_unexpected_end MPI Comm. Finished search of the unexpected

message queue

Request pointer

pml_ob1_posted_insert MPI Comm. Added request object to the posted

receive queue

Request pointer

pml_ob1_posted_remove MPI Comm. Removed request object to the posted

receive queue

Request pointer

pml_ob1_unex_insert MPI Comm. Added request object to the unexpected

message queue

Request pointer

pml_ob1_unex_remove MPI Comm. Removed request object to the

unexpected message queue

Request pointer

pml_ob1_transfer_begin MPI Comm. Data transmission has begun for a

request

Request pointer

pml_ob1_transfer MPI Comm. Data transfer on request Request pointer

pml_ob1_cancel MPI Comm. Receive request was canceled Request pointer

pml_ob1_free MPI Comm. MPI request was freeded Request pointer

btl/ugni Events

mca_base_event_netop_rdma None Network event Network operation-type, Target rank,

Size, Local address, Remote address

For example, by combining the information provided by MPI_T_-
event_get_info, MPI_T_enum_get_info, and MPI_T_enum_get_-
item, MEL is capable of providing relevant information, without

a specific semantic understanding programmed into the callback

itself, as shown by the following partial measurement output of the

ring_c example provided by Open MPI:

[0.002151416] 'pml_ob1_message_arrived ' \

context id=0 source =0 tag =201 \

sequence number =10

The name in single quotes is the event name and part of the

event information. The keys of the key-value pairs and the item

names of the provided (optional) enumeration type. The values of

the key-value pairs represent the values directly queried within the

event callback using MPI_T_event_read.

5.1.2 Profiling the Message Queues. Open MPI uses two mes-

sage queues to handle receiving messages efficiently – the posted

message queue, containing the message envelope for posted re-

ceive operations, and the unexpected message queue for messages

without an outstanding receive. Understanding the performance

characteristics of both queues can help the application developer

in a more efficient ordering of send and receive operations.

MEL provides callbacks to profile both the duration of how

long individual messages are waiting in the queue for and how

much time is spent on searching for messages in the queues. The

message queue statistics show the total number of messages en-

tering the queue, the total time the queue was populated, and

the maximum length of the queue as well as the average, mini-

mum and maximum time a message stayed in the queue. Events

used for the posted queue are pml_ob1_posted_insert/remove and
pml_ob1_unex_insert/remove are used for the unexpected message

queue. Output is generated for each rank similar to the following

example of a measurement of the Zeus-MP/2 (132.zeusmp2) bench-

mark of the SPEC MPI 2007 [23] benchmark suite on 24 processes:

[MEL] Posted queue statistics rank: 21 \

Num Messages: 14559 \

Max length of message queue: 14 \

Total time of messages in queue: 625.01 s \

Average time of message in queue: 0.0429294 s \

Min time of message in queue: 5.16e-07 s \

Max time of message in queue: 0.571345 s

The queue search analysis generates statistics for total search

time, the average time per search as well as minimal and max-

imal search time on each MPI process. It uses the event pairs

Enabling callback-driven runtime introspection via MPI_T EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

pml_ob1_search_posted_begin/end for the posted queue and pml_-
ob1_search_unexpected_begin/end for the unexpected queue, respec-

tively. Again the output is per MPI process as shown by the output

of the analysis of the Zeus-MP/2 benchmark:

[MEL] Unexpected queue search statistics rank: 21 \

Num Searches in queue: 29284 \

Total time searching in queue: 0.0351296 s \

Average time of a search: 1.19962e-06 s \

Min time of a search: 7.8e-08 s \

Max time of a search: 3.0116e-05 s

5.2 Optimizing RMDA-based Messaging
One early success for MPI_T Events came from debugging a perfor-

mance problem when using Open MPI with the RMA-MT bench-

mark suite. This benchmark suite consists of latency, bandwidth

and bi-directional measurements between a pair of MPI processes.

These benchmarks create a user-specified number of threads that

each perform a single (latency) or multiple (bandwidth) MPI_Put or
MPI_Get operation(s). A master thread handles all synchronization

(lock, flush, post-start-complete-wait (PSCW), etc).

At large thread counts (> 8 threads) we observed a significant

drop in the large message (> 8kB) bandwidth of MPI_Put. The
cause of this drop was unknown and a workaround was added that

essentially limits the number of active large put operations. This

was working well with the benchmarks. We implemented MPI_T

events in the ugni BTL to trigger when one-sided network opera-

tions were started and completed. The benchmarks were updated

to create callbacks to print out the size and thread ID when these

new event types are triggered. With these event types we were able

to determine that without the large message throttling most (in

some cases all) of the completion events were being handled by

the synchronization thread essentially serializing the completion of

network operations. With the throttling enabled the handing of the

completion events was more balanced between all the benchmark

threads. This information will be used to guide future development

in the multi-threaded RMA code paths.

5.3 Score-P Integration
We integrated MPI_T Events into Score-P [19] to show its applica-

bility to complex and established tool infrastructures. Score-P is

an event-based performance measurement and analysis tool, and

processes information based on event relationships defined in an

event model that enables portable performance analysis across

MPI implementations. The MPI_T approach to not define and man-

date specific events posed difficulties for the Score-P event model.

However, some event types mapped to events in the model. Identi-

fying similarity of events within and across MPI implementations

and how to handle them in event models such as that of Score-P,

OTF2 [9], and Scalasca Trace Analyzer [12] are left as future work.

We implemented a Score-P prototype that records searches in

the posted-message queue and the unexpected-message queue via

the event pair pml_ob1_search_posted_begin/end and the event pair

pml_ob1_search_unexpected_begin/end by modeling them as code

regions with enter and exit records. Events are recorded on a sepa-

rate location stream. Figure 1 shows how Vampir [18] displays the

event information of a measurement of the Zeus-MP/2 benchmark.

The information obtained through the MPI_T events interface re-

veals where the implementation searches the respective queues

during a call of MPI_Waitall. Score-P attaches the event informa-

tion passed to the begin callbacks to the corresponding enter event,

which Vampir displays as region attributes (shown on the right).

6 CONCLUSIONS
Asynchronous event information can greatly aid in the perfor-

mance analysis of MPI applications. It enables the detection of

causal and temporal relationships within a program’s execution,

which are not available through synchronous event information or

through summarized profiles. However, the current tool interfaces

in the MPI Standard do not provide asynchronous data leaving such

information unexplored, subject to approximation or heuristics

or dependent on implementation or vendor specific extensions —

portable tools leveraging event data are not possible.

To close this gap, we propose the MPI_T Events API. It extends

and cleanly integrates with the existing MPI_T interface with func-

tions for tools to register asynchronous callbacks for events of

interest generated by the MPI implementation. Our proposed API

follows the design philosophy of MPI_T and does not prescribe

any particular event, but rather lets the MPI implementation decide

which events to offer and in what form. Tools can then query the

MPI implementation for the events offered as well as their semantic

information and with that gain access to the events. Our proposed

API addresses many issues surrounding the use of callback APIs

in MPI, including the ability to reason about event order, restric-

tions imposed on callbacks in certain execution contexts as well

as the use of extendable type information and callback signatures.

Further, a prototype in Open MPI, one of the leading open source

MPI implementations, shows that the approach is both feasible and

can provide novel and helpful performance data to tools.

In summary, our MPI_T Events proposal closes a clear gap in

the current tool interfaces of MPI and can enable a new generation

of portable tools. It complements and completes the existing tool

APIs and hence equips MPI with new monitoring capabilities al-

ready present in other programming models, such as GASNet and

OpenMP. This proposal is currently under discussion in the MPI

Forum for inclusion in the MPI Standard. We hope that this paper

helps further this discussion, as well as spurs the development of

new, event-based tools for MPI applications.

ACKNOWLEDGMENT
We thank our colleagues at the MPI Forum and specifically the MPI

Forum Tools Working Group for their valuable feedback during the

discussion of this interface. This work was partly funded by the

Excellence Initiative of the German federal and state governments.

This work was performed under the auspices of the U.S. Depart-

ment of Energy by Lawrence Livermore National Laboratory under

Contract DE-AC52-07NA27344. LLNL-CONF-751714.

REFERENCES
[1] Dan Bonachea. 2006. GASNet Specification. Technical Report UCB/CSD-02-1207.

Lawrence Berkeley National Laboratory.

[2] Ron Brightwell, Sue Goudy, and Keith Underwood. 2005. A Preliminary Analysis

of the MPI Queue Characteristics of Several Applications. In Proceedings of the
2005 International Conference on Parallel Processing (ICPP ’05). IEEE, 175–183.

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Hermanns et al.

Figure 1: Zoomed timeline of an execution of Zeus-MP/2 on 24 processes. Solid blue lines of theMaster thread shows execution
of an MPI_Waitall; Magenta blocks on the location stream below show searches in the posted message queue.

[3] Kevin A Brown, Jens Domke, and Satoshi Matsuoka. 2014. Tracing Data Move-

ments Within MPI Collectives. In Proc. 21st Eur. MPI Users’ Gr. Meet. (EuroMPI/A-
SIA ’14). ACM, New York, NY, USA, 117:117—-117:118. https://doi.org/10.1145/

2642769.2642789

[4] Kevin A Brown, Jens Domke, and Satoshi Matsuoka. 2015. Hardware-Centric

Analysis of Network Performance for MPI Applications. In 2015 IEEE 21st Int.
Conf. Parallel Distrib. Syst. 692–699. https://doi.org/10.1109/ICPADS.2015.92

[5] Isaias Compres. [n. d.]. On-line Application-specific Tuning with the Periscope

Tuning Framework and theMPI Tools Interface. Presentation at the 2014 Petascale

Tools Workshop, Madison, WI, August 2014. ([n. d.]).

[6] Rossen Dimitrov, Anthony Skjellum, Terry Jones, Bronis de Supinski, Ron

Brightwell, Curtis Janssen, and MaryDell Nochumson. 2002. PERUSE: An MPI

Performance Revealing Extensions Interface. Sixth IBM System Scientific Com-
puting User Group (2002).

[7] Matthew G. F. Dosanjh, Taylor Groves, Ryan E. Grant, Ron Brightwell, and

Patrick G. Bridges. 2016. RMA-MT: A Benchmark Suite for Assessing MPI Multi-

threaded RMA Performance. In 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid). 550–559. https://doi.org/10.1109/

CCGrid.2016.84

[8] Alexandre E Eichenberger, John Mellor-Crummey, Martin Schulz, Michael Wong,

Nawal Copty, Robert Dietrich, Xu Liu, Eugene Loh, and Daniel Lorenz. 2013.

OMPT: An OpenMP Tools Application Programming Interface for Performance

Analysis. In OpenMP Era Low Power Devices Accel., Alistair P Rendell, Barbara M

Chapman, and Matthias S Müller (Eds.). Springer Berlin Heidelberg, Berlin, Hei-

delberg, 171–185.

[9] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolf-

gang E. Nagel, and Felix Wolf. 2012. Open Trace Format 2: The next generation

of scalable trace formats and support libraries. Adv. Parallel Comput. 22 (2012),
481–490. https://doi.org/10.3233/978-1-61499-041-3-481

[10] Esthela Gallardo, Jerome Vienne, Leonardo Fialho, Patricia Teller, and James

Browne. 2015. MPI Advisor: A Minimal Overhead Tool for MPI Library Perfor-

mance Tuning. In Proc. 22nd Eur. MPI Users’ Gr. Meet. (EuroMPI ’15). ACM, New

York, NY, USA, 6:1—-6:10. https://doi.org/10.1145/2802658.2802667

[11] Esthela Gallardo, Jerome Vienne, Leonardo Fialho, Patricia Teller, and James

Browne. 2017. Employing MPI_T in MPI Advisor to optimize application perfor-

mance. The International Journal of High Performance Computing Applications 0,
0 (2017). https://doi.org/10.1177/1094342016684005

[12] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, and

Bernd Mohr. 2010. The Scalasca performance toolset architecture. Concurrency
and Computation: Practice and Experience 22, 6 (April 2010), 702–719. https:

//doi.org/10.1002/cpe.1556

[13] Samuel K. Gutierrez, Nathan T. Hjelm, Manjunath G. Venkata, and Richard L.

Graham. 2012. Performance Evaluation of Open MPI on Cray XE/XK Systems.

In 2012 IEEE 20th Annual Symposium on High-Performance Interconnects. 40–47.
https://doi.org/10.1109/HOTI.2012.11

[14] Tanzima Islam, Kathryn Mohror, and Martin Schulz. 2014. Exploring the Capabil-

ities of the New MPI_T Interface. In Proceedings of the 21st European MPI Users’
Group Meeting (EuroMPI/ASIA ’14).

[15] Terry Jones, BrianWBarrett, David E. Bernholdt, Ron Brightwell, Lars Ailo Bongo,

George Bosilca, Ana Cortés, Toni Cortés, James Coyle, Bronis R de Supinski,

Rossen Dimitrov, Sevki Erdogon, Hans-Christian Hoppe, Graham Fagg, Ferdinand

Geier, Judit Gimenez, Richard L. Graham, David Gunter, Steven T. Healey, Curtis

Janssen, Karen L. Karavanic, Rainer Keller, Bernie King-Smith, Darren J. Kerbyson,

Jesús Labarta, Brian LePore, Andrew Lumsdaine, Chee Wai Lee, Ewing L. Lusk,

Dave Merril, Bernd Mohr, Kathryn Mohror, Matthias S. Müller, Beth Noble,

Robert W. Numrich, Patrick Ohly, Dhabaleswar K. Panda, Kurt Pinnow, Kumaran

Pajaram, Hubert Ritzdorf, Philip C. Roth, Martin Schulz, Miquel Senar, Anthony

Skjellum, Jeff Squyres, Richard Treumann, and Tim Woodall. 2006. MPI PERUSE:
An MPI Extension for Revealing Unexposed Implementation Information. Technical
Report. LLNL.

[16] Rainer Keller, George Bosilca, Graham Fagg, Michael Resch, and Jack J. Dongarra.

2006. Implementation and Usage of the PERUSE-Interface in Open MPI. In Recent
Adv. Parallel Virtual Mach. Messag. Passing Interface, Bernd Mohr, Jesper Larsson

Träff, Joachim Worringen, and Jack Dongarra (Eds.). LNCS, Vol. 4192. Springer

Berlin Heidelberg, 347–355. https://doi.org/10.1007/11846802_48

[17] Rainer Keller and Richard L Graham. 2010. Characteristics of the Unexpected

Message Queue of MPI Applications. In Recent Adv. Messag. Passing Interface,
Rainer Keller, Edgar Gabriel, Michael Resch, and Jack Dongarra (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 179–188.

[18] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber,

Holger Mickler, Matthias S Müller, and Wolfgang E Nagel. 2008. The Vampir

performance analysis tool-set. In Tools for High Perf. Comp. Springer, 139–155.
[19] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,

Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen D.

Malony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk

Schmidl, Sameer S Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and

FelixWolf. 2012. Score-P: A Joint PerformanceMeasurement Run-Time Infrastruc-

ture for Periscope, Scalasca, TAU, and Vampir. In Tools High Perform. Comput. 2011,
Holger Brunst, Matthias S Müller, Wolfgang E Nagel, and Michael M Resch (Eds.).

Springer Berlin Heidelberg, 79–91. https://doi.org/10.1007/978-3-642-31476-6_7

[20] Julian M. Kunkel, Yuichi Tsujita, Olga Mordvinova, and Thomas Ludwig. 2009.

Tracing Internal Communication in MPI and MPI-I/O. In Int. Conf. on Parallel
and Distrib. Comp., Applications and Technologies. IEEE, 280–286.

[21] Adam Leko, Dan Bonachea, Hung-Hsun Su, and Alan D. George. 2006. GASP : A
Performance Analysis Tool Interface for Global Address Space Programming Models.
Technical Report LBNL-61606. Lawrence Berkeley National Lab. 1–12 pages.

[22] Adam Leko, Hung-Hsun Su, Dan Bonachea, Bryan Golden, Max Billingsley

III., and Alan D. George. 2006. Parallel performance wizard: a performance

analysis tool for partitioned global-address-space programming models. In SC
’06 Proc. 2006 ACM/IEEE Conf. Supercomput. ACM, New York, NY, USA, 186.

https://doi.org/10.1145/1188455.1188647

[23] Matthias S. Müller, Matthijs vanWaveren, Ron Lieberman, BrianWhitney, Hideki

Saito, Kalyan Kumaran, John Baron, William C. Brantley, Chris Parrott, Tom

Elken, Huiyu Feng, and Carl Ponder. 2007. SPEC MPI2007 – an application

benchmark suite for parallel systems using MPI. Concurrency and Computation:
Practice and Experience 22, 2 (2007), 191–205. https://doi.org/10.1002/cpe.1535

[24] OpenMP Architecture Review Board. 2015. OpenMP 4.5 Specification.
[25] Raghunath Rajachandrasekar, Jonathan Perkins, Khaled Hamidouche, Mark

Arnold, and Dhabaleswar K. Panda. 2014. Understanding the Memory-Utilization

of MPI Libraries: Challenges and Designs in Implementing the MPI_T Interface.

In Proc. of the 21st European MPI Users’ Group Meeting (EuroMPI/ASIA ’14).
[26] Srinivasan Ramesh, Aurèle Mahéo, Sameer Shende, Allen D. Malony, Hari Subra-

moni, and Dhabaleswar K. Panda. 2017. MPI Performance Engineering with the

MPI Tool Interface: The Integration of MVAPICH and TAU. In Proceedings of the
24th European MPI Users’ Group Meeting (EuroMPI ’17).

[27] Hung-Hsun Su. 2010. Parallel Performance Wizard: Framework and Techniques
for Parallel Application Optimization. Ph.D. Dissertation. University of Florida.

[28] The Message Passing Interface Forum. 2015. MPI: A Message Passing Interface
Standard, Version 3.1.

[29] UPC Consortium. 2013. UPC Language Specifications. (Nov. 2013).

https://doi.org/10.1145/2642769.2642789
https://doi.org/10.1145/2642769.2642789
https://doi.org/10.1109/ICPADS.2015.92
https://doi.org/10.1109/CCGrid.2016.84
https://doi.org/10.1109/CCGrid.2016.84
https://doi.org/10.3233/978-1-61499-041-3-481
https://doi.org/10.1145/2802658.2802667
https://doi.org/10.1177/1094342016684005
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1109/HOTI.2012.11
https://doi.org/10.1007/11846802_48
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1145/1188455.1188647
https://doi.org/10.1002/cpe.1535

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Event Information in MPI
	2.2 Event Interfaces for Tools
	2.3 PERUSE

	3 Design
	3.1 Query Event Type Information
	3.2 Event Handle Management
	3.3 Event Callback Requirements
	3.4 Reading Event Data
	3.5 Reading Event Metadata
	3.6 Event Sources

	4 Implementation
	4.1 Open MPI
	4.2 Events

	5 Case Studies
	5.1 MEL—MPI_T Events Logger
	5.2 Optimizing RMDA-based Messaging
	5.3 Score-P Integration

	6 Conclusions
	References

