000856884 001__ 856884
000856884 005__ 20240619083548.0
000856884 0247_ $$2doi$$a10.1002/adbi.201800138
000856884 0247_ $$2WOS$$aWOS:000452532700006
000856884 0247_ $$2altmetric$$aaltmetric:53052269
000856884 037__ $$aFZJ-2018-06216
000856884 082__ $$a570
000856884 1001_ $$0P:(DE-HGF)0$$aDang, Ka My$$b0
000856884 245__ $$aChip-Based Heat Stimulation for Modulating Signal Propagation in HL-1 Cell Networks
000856884 260__ $$aWeinheim$$bWiley-VCH$$c2018
000856884 3367_ $$2DRIVER$$aarticle
000856884 3367_ $$2DataCite$$aOutput Types/Journal article
000856884 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1545233977_18403
000856884 3367_ $$2BibTeX$$aARTICLE
000856884 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856884 3367_ $$00$$2EndNote$$aJournal Article
000856884 520__ $$aSignal propagation in cardiac cell networks can be modulated by heat stimulation. Here, we investigate the response of a connected HL-1 cardiomyocyte cell network to the application of confined heat stimuli using Ca2+ imaging. Localized temperature gradients are generated by resistive heating via microwire arrays on a chip surface, which serves as a substrate for growing a confluent cell network. We demonstrate that upon heat stimulation, the velocity of the propagating Ca2+ wave in the network is locally increased, leading to a deformation of the wavefront. Furthermore, we show evidence of a change in the signal propagation direction caused by a relocation of the pacemaker cell. This effect might be used in future applications, where heat is employed as an alternative modality for cell stimulation protocols.
000856884 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000856884 588__ $$aDataset connected to CrossRef
000856884 7001_ $$0P:(DE-Juel1)140264$$aRinklin, Philipp$$b1
000856884 7001_ $$0P:(DE-Juel1)144600$$aAfanasenkau, Dzmitry$$b2
000856884 7001_ $$0P:(DE-HGF)0$$aWestmeyer, Gil$$b3
000856884 7001_ $$0P:(DE-HGF)0$$aSchürholz, Tobias$$b4
000856884 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b5$$ufzj
000856884 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b6$$eCorresponding author
000856884 773__ $$0PERI:(DE-600)2880980-4$$a10.1002/adbi.201800138$$gp. 1800138 -$$p1800138 -$$tAdvanced biosystems$$v2$$x2366-7478$$y2018
000856884 8564_ $$uhttps://juser.fz-juelich.de/record/856884/files/Dang_et_al-2018-Advanced_Biosystems.pdf$$yRestricted
000856884 8564_ $$uhttps://juser.fz-juelich.de/record/856884/files/Dang-2018-1800138-SI.pdf$$yRestricted
000856884 8564_ $$uhttps://juser.fz-juelich.de/record/856884/files/HL1_paper_submission_revised_version_b.pdf$$yRestricted
000856884 8564_ $$uhttps://juser.fz-juelich.de/record/856884/files/Dang-2018-1800138-SI.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856884 8564_ $$uhttps://juser.fz-juelich.de/record/856884/files/HL1_paper_submission_revised_version_b.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856884 8564_ $$uhttps://juser.fz-juelich.de/record/856884/files/Dang_et_al-2018-Advanced_Biosystems.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856884 909CO $$ooai:juser.fz-juelich.de:856884$$pVDB
000856884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b5$$kFZJ
000856884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b6$$kFZJ
000856884 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000856884 9141_ $$y2018
000856884 920__ $$lyes
000856884 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000856884 980__ $$ajournal
000856884 980__ $$aVDB
000856884 980__ $$aI:(DE-Juel1)ICS-3-20110106
000856884 980__ $$aUNRESTRICTED