000856907 001__ 856907
000856907 005__ 20210129235423.0
000856907 0247_ $$2Handle$$a2128/19909
000856907 037__ $$aFZJ-2018-06234
000856907 041__ $$aEnglish
000856907 1001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b0$$eCorresponding author$$ufzj
000856907 1112_ $$aDagstuhl Seminar 18442$$cWadern$$d2018-10-29 - 2018-11-02$$wGermany
000856907 245__ $$aA path to process general matrix fields
000856907 260__ $$c2018
000856907 3367_ $$033$$2EndNote$$aConference Paper
000856907 3367_ $$2DataCite$$aOther
000856907 3367_ $$2BibTeX$$aINPROCEEDINGS
000856907 3367_ $$2DRIVER$$aconferenceObject
000856907 3367_ $$2ORCID$$aLECTURE_SPEECH
000856907 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1541425880_25761$$xAfter Call
000856907 502__ $$cSchloss Dagstuhl
000856907 520__ $$aA general framework is presented that allows for transferring data-processing algorithms for scalar to arbitrary matrix fields.That means to find analogues for fundamental operations such as linear combinations and maximum/minimum in this setting.Furthermore, we aim to process fields consisting of certain subsets such as the symmetric, skew-symmetric, Hermitian, and the general and orthogonal group. Some numerical examples concerning the special orthogonal group and the general linear group connected to Moebius transforms in hyperbolic geometry are presented.
000856907 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000856907 8564_ $$uhttps://juser.fz-juelich.de/record/856907/files/Pitch-Slide.pdf$$yOpenAccess
000856907 8564_ $$uhttps://juser.fz-juelich.de/record/856907/files/Talk-Slides.pdf$$yOpenAccess
000856907 8564_ $$uhttps://juser.fz-juelich.de/record/856907/files/Pitch-Slide.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856907 8564_ $$uhttps://juser.fz-juelich.de/record/856907/files/Talk-Slides.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856907 909CO $$ooai:juser.fz-juelich.de:856907$$pdriver$$pVDB$$popen_access$$popenaire
000856907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b0$$kFZJ
000856907 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000856907 9141_ $$y2018
000856907 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000856907 920__ $$lno
000856907 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000856907 980__ $$aconf
000856907 980__ $$aVDB
000856907 980__ $$aUNRESTRICTED
000856907 980__ $$aI:(DE-Juel1)JSC-20090406
000856907 9801_ $$aFullTexts