001 | 856907 | ||
005 | 20210129235423.0 | ||
024 | 7 | _ | |a 2128/19909 |2 Handle |
037 | _ | _ | |a FZJ-2018-06234 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Kleefeld, Andreas |0 P:(DE-Juel1)169421 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a Dagstuhl Seminar 18442 |c Wadern |d 2018-10-29 - 2018-11-02 |w Germany |
245 | _ | _ | |a A path to process general matrix fields |
260 | _ | _ | |c 2018 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1541425880_25761 |2 PUB:(DE-HGF) |x After Call |
502 | _ | _ | |c Schloss Dagstuhl |
520 | _ | _ | |a A general framework is presented that allows for transferring data-processing algorithms for scalar to arbitrary matrix fields.That means to find analogues for fundamental operations such as linear combinations and maximum/minimum in this setting.Furthermore, we aim to process fields consisting of certain subsets such as the symmetric, skew-symmetric, Hermitian, and the general and orthogonal group. Some numerical examples concerning the special orthogonal group and the general linear group connected to Moebius transforms in hyperbolic geometry are presented. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/856907/files/Pitch-Slide.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/856907/files/Talk-Slides.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/856907/files/Pitch-Slide.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/856907/files/Talk-Slides.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:856907 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)169421 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|