000856915 001__ 856915
000856915 005__ 20210129235424.0
000856915 0247_ $$2doi$$a10.1038/s42005-018-0079-3
000856915 0247_ $$2Handle$$a2128/19904
000856915 0247_ $$2WOS$$aWOS:000449055500002
000856915 0247_ $$2altmetric$$aaltmetric:51061115
000856915 037__ $$aFZJ-2018-06242
000856915 082__ $$a530
000856915 1001_ $$0P:(DE-HGF)0$$aWomack, F. N.$$b0
000856915 245__ $$aAtomic-scale tailoring of spin susceptibility via non-magnetic spin-orbit impurities
000856915 260__ $$aLondon$$bSpringer Nature$$c2018
000856915 3367_ $$2DRIVER$$aarticle
000856915 3367_ $$2DataCite$$aOutput Types/Journal article
000856915 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1541407275_25758
000856915 3367_ $$2BibTeX$$aARTICLE
000856915 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856915 3367_ $$00$$2EndNote$$aJournal Article
000856915 520__ $$aFollowing the discovery of topological insulators, there has been a renewed interest in superconducting systems that have strong spin-orbit (SO) coupling. Here we address the fundamental question of how the spin properties of a otherwise spin-singlet superconducting ground state evolve with increasing SO impurity density. We have mapped out the Zeeman critical field phase diagram of superconducting Al films that were deposited over random Pb cluster arrays of varying density. These phase diagrams give a direct measure of the Fermi liquid spin renormalization, as well as the spin orbit scattering rate. We find that the spin renormalization is a linear function of the average Pb cluster -to- cluster separation and that this dependency can be used to tune the spin susceptibility of the Al over a surprisingly wide range from 0.8χ0 to 4.0χ0, where χ0 is the non-interacting Pauli susceptibility.
000856915 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000856915 588__ $$aDataset connected to CrossRef
000856915 7001_ $$0P:(DE-HGF)0$$aAdams, P. W.$$b1$$eCorresponding author
000856915 7001_ $$0P:(DE-HGF)0$$aNam, H.$$b2
000856915 7001_ $$00000-0003-2734-7023$$aShih, C. K.$$b3
000856915 7001_ $$0P:(DE-Juel1)151130$$aCatelani, G.$$b4$$eCorresponding author
000856915 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-018-0079-3$$gVol. 1, no. 1, p. 72$$n1$$p72$$tCommunications Physics$$v1$$x2399-3650$$y2018
000856915 8564_ $$uhttps://juser.fz-juelich.de/record/856915/files/s42005-018-0079-3.pdf$$yOpenAccess
000856915 8564_ $$uhttps://juser.fz-juelich.de/record/856915/files/s42005-018-0079-3.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856915 909CO $$ooai:juser.fz-juelich.de:856915$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000856915 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856915 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000856915 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000856915 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000856915 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000856915 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000856915 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000856915 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856915 9141_ $$y2018
000856915 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b4$$kFZJ
000856915 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000856915 920__ $$lyes
000856915 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000856915 980__ $$ajournal
000856915 980__ $$aVDB
000856915 980__ $$aUNRESTRICTED
000856915 980__ $$aI:(DE-Juel1)PGI-11-20170113
000856915 9801_ $$aFullTexts