001     856915
005     20210129235424.0
024 7 _ |2 doi
|a 10.1038/s42005-018-0079-3
024 7 _ |2 Handle
|a 2128/19904
024 7 _ |2 WOS
|a WOS:000449055500002
024 7 _ |2 altmetric
|a altmetric:51061115
037 _ _ |a FZJ-2018-06242
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Womack, F. N.
|b 0
245 _ _ |a Atomic-scale tailoring of spin susceptibility via non-magnetic spin-orbit impurities
260 _ _ |a London
|b Springer Nature
|c 2018
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1541407275_25758
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Following the discovery of topological insulators, there has been a renewed interest in superconducting systems that have strong spin-orbit (SO) coupling. Here we address the fundamental question of how the spin properties of a otherwise spin-singlet superconducting ground state evolve with increasing SO impurity density. We have mapped out the Zeeman critical field phase diagram of superconducting Al films that were deposited over random Pb cluster arrays of varying density. These phase diagrams give a direct measure of the Fermi liquid spin renormalization, as well as the spin orbit scattering rate. We find that the spin renormalization is a linear function of the average Pb cluster -to- cluster separation and that this dependency can be used to tune the spin susceptibility of the Al over a surprisingly wide range from 0.8χ0 to 4.0χ0, where χ0 is the non-interacting Pauli susceptibility.
536 _ _ |0 G:(DE-HGF)POF3-144
|a 144 - Controlling Collective States (POF3-144)
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Adams, P. W.
|b 1
|e Corresponding author
700 1 _ |0 P:(DE-HGF)0
|a Nam, H.
|b 2
700 1 _ |0 0000-0003-2734-7023
|a Shih, C. K.
|b 3
700 1 _ |0 P:(DE-Juel1)151130
|a Catelani, G.
|b 4
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2921913-9
|a 10.1038/s42005-018-0079-3
|g Vol. 1, no. 1, p. 72
|n 1
|p 72
|t Communications Physics
|v 1
|x 2399-3650
|y 2018
856 4 _ |u https://juser.fz-juelich.de/record/856915/files/s42005-018-0079-3.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/856915/files/s42005-018-0079-3.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:856915
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)151130
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-144
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0112
|2 StatID
|a WoS
|b Emerging Sources Citation Index
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Blind peer review
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21