Home > Publications database > Maximum fluorescence and electron transport kinetics determined by light-induced fluorescence transients (LIFT) for photosynthesis phenotyping > print |
001 | 856917 | ||
005 | 20220930130200.0 | ||
024 | 7 | _ | |a 10.1007/s11120-018-0594-9 |2 doi |
024 | 7 | _ | |a 0166-8595 |2 ISSN |
024 | 7 | _ | |a 1573-5079 |2 ISSN |
024 | 7 | _ | |a 2128/22188 |2 Handle |
024 | 7 | _ | |a altmetric:51222965 |2 altmetric |
024 | 7 | _ | |a pmid:30357678 |2 pmid |
024 | 7 | _ | |a WOS:000466916000008 |2 WOS |
037 | _ | _ | |a FZJ-2018-06244 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Keller, Beat |0 P:(DE-Juel1)165737 |b 0 |e Corresponding author |
245 | _ | _ | |a Maximum fluorescence and electron transport kinetics determined by light-induced fluorescence transients (LIFT) for photosynthesis phenotyping |
260 | _ | _ | |a Dordrecht [u.a.] |c 2019 |b Springer Science + Business Media B.V |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1557995476_31832 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Photosynthetic phenotyping requires quick characterization of dynamic traits when measuring large plant numbers in a fluctuating environment. Here, we evaluated the light-induced fluorescence transient (LIFT) method for its capacity to yield rapidly fluorometric parameters from 0.6 m distance. The close approximation of LIFT to conventional chlorophyll fluorescence (ChlF) parameters is shown under controlled conditions in spinach leaves and isolated thylakoids when electron transport was impaired by anoxic conditions or chemical inhibitors. The ChlF rise from minimum fluorescence (Fo) to maximum fluorescence induced by fast repetition rate (Fm−FRR) flashes was dominated by reduction of the primary electron acceptor in photosystem II (QA). The subsequent reoxidation of QA− was quantified using the relaxation of ChlF in 0.65 ms (Fr1) and 120 ms (Fr2) phases. Reoxidation efficiency of QA− (Fr1/Fv, where Fv = Fm−FRR − Fo) decreased when electron transport was impaired, while quantum efficiency of photosystem II (Fv/Fm) showed often no significant effect. ChlF relaxations of the LIFT were similar to an independent other method. Under increasing light intensities, Fr2′/Fq′ (where Fr2′ and Fq′ represent Fr2 and Fv in the light-adapted state, respectively) was hardly affected, whereas the operating efficiency of photosystem II (Fq′/Fm′) decreased due to non-photochemical quenching. Fm−FRR was significantly lower than the ChlF maximum induced by multiple turnover (Fm−MT) flashes. However, the resulting Fv/Fm and Fq′/Fm′ from both flashes were highly correlated. The LIFT method complements Fv/Fm with information about efficiency of electron transport. Measurements in situ and from a distance facilitate application in high-throughput and automated phenotyping. |
536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 0 |
536 | _ | _ | |a DPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A) |0 G:(DE-Juel1)BMBF-031A053A |c BMBF-031A053A |f Deutsches Pflanzen Phänotypisierungsnetzwerk |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Vass, Imre |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Matsubara, Shizue |0 P:(DE-Juel1)129358 |b 2 |
700 | 1 | _ | |a Paul, Kenny |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Jedmowski, Christoph |0 P:(DE-Juel1)169447 |b 4 |
700 | 1 | _ | |a Pieruschka, Roland |0 P:(DE-Juel1)129379 |b 5 |
700 | 1 | _ | |a Nedbal, Ladislav |0 P:(DE-Juel1)159592 |b 6 |
700 | 1 | _ | |a Rascher, Uwe |0 P:(DE-Juel1)129388 |b 7 |
700 | 1 | _ | |a Muller, Onno |0 P:(DE-Juel1)161185 |b 8 |
773 | _ | _ | |a 10.1007/s11120-018-0594-9 |0 PERI:(DE-600)1475688-2 |n 2 |p 221-233 |t Photosynthesis research |v 140 |y 2019 |x 0166-8595 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856917/files/2018_2936126419.pdf |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/856917/files/2018_2936126419.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/856917/files/Keller2019_Article_MaximumFluorescenceAndElectron.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/856917/files/Keller2019_Article_MaximumFluorescenceAndElectron.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:856917 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129358 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)169447 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129379 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)159592 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129388 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)161185 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |2 G:(DE-HGF)POF3-500 |v Plant Science |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHOTOSYNTH RES : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|