| Home > Publications database > Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding > print |
| 001 | 856918 | ||
| 005 | 20210129235425.0 | ||
| 024 | 7 | _ | |a 10.1016/j.plantsci.2018.06.018 |2 doi |
| 024 | 7 | _ | |a 0168-9452 |2 ISSN |
| 024 | 7 | _ | |a 1873-2259 |2 ISSN |
| 024 | 7 | _ | |a 2128/22093 |2 Handle |
| 024 | 7 | _ | |a pmid:31003609 |2 pmid |
| 024 | 7 | _ | |a WOS:000466829900005 |2 WOS |
| 024 | 7 | _ | |a altmetric:49313714 |2 altmetric |
| 037 | _ | _ | |a FZJ-2018-06245 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a van Eeuwijk, Fred A. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2019 |b Elsevier Science |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1556001838_22955 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a New types of phenotyping tools generate large amounts of data on many aspects of plant physiology and morphology with high spatial and temporal resolution. These new phenotyping data are potentially useful to improve understanding and prediction of complex traits, like yield, that are characterized by strong environmental context dependencies, i.e., genotype by environment interactions. For an evaluation of the utility of new phenotyping information, we will look at how this information can be incorporated in different classes of genotype-to-phenotype (G2P) models. G2P models predict phenotypic traits as functions of genotypic and environmental inputs. In the last decade, access to high-density single nucleotide polymorphism markers (SNPs) and sequence information has boosted the development of a class of G2P models called genomic prediction models that predict phenotypes from genome wide marker profiles. The challenge now is to build G2P models that incorporate simultaneously extensive genomic information alongside with new phenotypic information. Beyond the modification of existing G2P models, new G2P paradigms are required. We present candidate G2P models for the integration of genomic and new phenotyping information and illustrate their use in examples. Special attention will be given to the modelling of genotype by environment interactions. The G2P models provide a framework for model based phenotyping and the evaluation of the utility of phenotyping information in the context of breeding programs. |
| 536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 0 |
| 536 | _ | _ | |a DPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A) |0 G:(DE-Juel1)BMBF-031A053A |c BMBF-031A053A |f Deutsches Pflanzen Phänotypisierungsnetzwerk |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Bustos-Korts, Daniela |0 0000-0003-3827-6726 |b 1 |
| 700 | 1 | _ | |a Millet, Emilie J. |0 0000-0002-2913-4892 |b 2 |
| 700 | 1 | _ | |a Boer, Martin P. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Kruijer, Willem |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Thompson, Addie |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Malosetti, Marcos |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Iwata, Hiroyoshi |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Quiroz, Roberto |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Kuppe, Christian |0 P:(DE-Juel1)161296 |b 9 |u fzj |
| 700 | 1 | _ | |a Muller, Onno |0 P:(DE-Juel1)161185 |b 10 |
| 700 | 1 | _ | |a Blazakis, Konstantinos N. |0 0000-0002-2837-0367 |b 11 |
| 700 | 1 | _ | |a Yu, Kang |0 P:(DE-HGF)0 |b 12 |
| 700 | 1 | _ | |a Tardieu, Francois |0 0000-0002-7287-0094 |b 13 |
| 700 | 1 | _ | |a Chapman, Scott C. |0 P:(DE-HGF)0 |b 14 |
| 773 | _ | _ | |a 10.1016/j.plantsci.2018.06.018 |g p. S0168945217311548 |0 PERI:(DE-600)1498605-x |p 23-39 |t Plant science |v 282 |y 2019 |x 0168-9452 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/856918/files/1-s2.0-S0168945217311548-main.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/856918/files/1-s2.0-S0168945217311548-main.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:856918 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)161296 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)161185 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |2 G:(DE-HGF)POF3-500 |v Plant Science |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2019 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLANT SCI : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|