000856921 001__ 856921
000856921 005__ 20220930130200.0
000856921 0247_ $$2doi$$a10.1021/acs.nanolett.8b03023
000856921 0247_ $$2ISSN$$a1530-6984
000856921 0247_ $$2ISSN$$a1530-6992
000856921 0247_ $$2pmid$$apmid:30241437
000856921 0247_ $$2WOS$$aWOS:000455561300007
000856921 0247_ $$2altmetric$$aaltmetric:48953782
000856921 037__ $$aFZJ-2018-06248
000856921 082__ $$a660
000856921 1001_ $$0P:(DE-Juel1)159254$$aBaeumer, Christoph$$b0$$eCorresponding author
000856921 245__ $$aIn-Gap States and Band-Like Transport in Memristive Devices
000856921 260__ $$aWashington, DC$$bACS Publ.$$c2019
000856921 3367_ $$2DRIVER$$aarticle
000856921 3367_ $$2DataCite$$aOutput Types/Journal article
000856921 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547623399_15236
000856921 3367_ $$2BibTeX$$aARTICLE
000856921 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856921 3367_ $$00$$2EndNote$$aJournal Article
000856921 520__ $$aPoint defects such as oxygen vacancies cause emergent phenomena such as resistive switching in transition-metal oxides, but their influence on the electron-transport properties is far from being understood. Here, we employ direct mapping of the electronic structure of a memristive device by spectromicroscopy. We find that oxygen vacancies result in in-gap states that we use as input for single-band transport simulations. Because the in-gap states are situated below the Fermi level, they do not contribute to the current directly but impact the shape of the conduction band. Accordingly, we can describe our devices with band-like transport and tunneling across the Schottky barrier at the interface.
000856921 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000856921 588__ $$aDataset connected to CrossRef
000856921 7001_ $$0P:(DE-HGF)0$$aFunck, Carsten$$b1
000856921 7001_ $$0P:(DE-HGF)0$$aLocatelli, Andrea$$b2
000856921 7001_ $$0P:(DE-HGF)0$$aMenteş, Tevfik Onur$$b3
000856921 7001_ $$0P:(DE-HGF)0$$aGenuzio, Francesca$$b4
000856921 7001_ $$0P:(DE-Juel1)169605$$aHeisig, Thomas$$b5$$ufzj
000856921 7001_ $$0P:(DE-Juel1)165926$$aHensling, Felix$$b6$$ufzj
000856921 7001_ $$0P:(DE-Juel1)157925$$aRaab, Nicolas$$b7
000856921 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b8
000856921 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b9$$ufzj
000856921 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b10
000856921 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b11$$ufzj
000856921 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.8b03023$$gp. acs.nanolett.8b03023$$n1$$p54-60$$tNano letters$$v19$$x1530-6992$$y2019
000856921 8564_ $$uhttps://juser.fz-juelich.de/record/856921/files/Invoice%281%29.pdf
000856921 8564_ $$uhttps://juser.fz-juelich.de/record/856921/files/acs.nanolett.8b03023.pdf$$yRestricted
000856921 8564_ $$uhttps://juser.fz-juelich.de/record/856921/files/Invoice%281%29.pdf?subformat=pdfa$$xpdfa
000856921 8564_ $$uhttps://juser.fz-juelich.de/record/856921/files/acs.nanolett.8b03023.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856921 8767_ $$8APC600018226$$92018-10-31$$d2018-11-05$$eColour charges$$jZahlung erfolgt$$z1495 USD
000856921 909CO $$ooai:juser.fz-juelich.de:856921$$pOpenAPC$$pVDB$$popenCost
000856921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b0$$kFZJ
000856921 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000856921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169605$$aForschungszentrum Jülich$$b5$$kFZJ
000856921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165926$$aForschungszentrum Jülich$$b6$$kFZJ
000856921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b8$$kFZJ
000856921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b9$$kFZJ
000856921 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b10$$kExtern
000856921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b10$$kFZJ
000856921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b11$$kFZJ
000856921 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000856921 9141_ $$y2019
000856921 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856921 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856921 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000856921 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2017
000856921 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856921 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856921 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856921 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856921 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856921 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856921 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856921 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2017
000856921 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000856921 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000856921 980__ $$ajournal
000856921 980__ $$aVDB
000856921 980__ $$aI:(DE-Juel1)PGI-7-20110106
000856921 980__ $$aI:(DE-82)080009_20140620
000856921 980__ $$aAPC
000856921 980__ $$aUNRESTRICTED
000856921 9801_ $$aAPC