001 | 856921 | ||
005 | 20220930130200.0 | ||
024 | 7 | _ | |a 10.1021/acs.nanolett.8b03023 |2 doi |
024 | 7 | _ | |a 1530-6984 |2 ISSN |
024 | 7 | _ | |a 1530-6992 |2 ISSN |
024 | 7 | _ | |a pmid:30241437 |2 pmid |
024 | 7 | _ | |a WOS:000455561300007 |2 WOS |
024 | 7 | _ | |a altmetric:48953782 |2 altmetric |
037 | _ | _ | |a FZJ-2018-06248 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Baeumer, Christoph |0 P:(DE-Juel1)159254 |b 0 |e Corresponding author |
245 | _ | _ | |a In-Gap States and Band-Like Transport in Memristive Devices |
260 | _ | _ | |a Washington, DC |c 2019 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1547623399_15236 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Point defects such as oxygen vacancies cause emergent phenomena such as resistive switching in transition-metal oxides, but their influence on the electron-transport properties is far from being understood. Here, we employ direct mapping of the electronic structure of a memristive device by spectromicroscopy. We find that oxygen vacancies result in in-gap states that we use as input for single-band transport simulations. Because the in-gap states are situated below the Fermi level, they do not contribute to the current directly but impact the shape of the conduction band. Accordingly, we can describe our devices with band-like transport and tunneling across the Schottky barrier at the interface. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Funck, Carsten |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Locatelli, Andrea |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Menteş, Tevfik Onur |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Genuzio, Francesca |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Heisig, Thomas |0 P:(DE-Juel1)169605 |b 5 |u fzj |
700 | 1 | _ | |a Hensling, Felix |0 P:(DE-Juel1)165926 |b 6 |u fzj |
700 | 1 | _ | |a Raab, Nicolas |0 P:(DE-Juel1)157925 |b 7 |
700 | 1 | _ | |a Schneider, Claus M. |0 P:(DE-Juel1)130948 |b 8 |
700 | 1 | _ | |a Menzel, Stephan |0 P:(DE-Juel1)158062 |b 9 |u fzj |
700 | 1 | _ | |a Waser, Rainer |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Dittmann, Regina |0 P:(DE-Juel1)130620 |b 11 |u fzj |
773 | _ | _ | |a 10.1021/acs.nanolett.8b03023 |g p. acs.nanolett.8b03023 |0 PERI:(DE-600)2048866-X |n 1 |p 54-60 |t Nano letters |v 19 |y 2019 |x 1530-6992 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856921/files/Invoice%281%29.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856921/files/acs.nanolett.8b03023.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856921/files/Invoice%281%29.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856921/files/acs.nanolett.8b03023.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:856921 |p VDB |p OpenAPC |p openCost |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)159254 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)169605 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)165926 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130948 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)158062 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)130620 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO LETT : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NANO LETT : 2017 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|