001     856921
005     20220930130200.0
024 7 _ |a 10.1021/acs.nanolett.8b03023
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a pmid:30241437
|2 pmid
024 7 _ |a WOS:000455561300007
|2 WOS
024 7 _ |a altmetric:48953782
|2 altmetric
037 _ _ |a FZJ-2018-06248
082 _ _ |a 660
100 1 _ |a Baeumer, Christoph
|0 P:(DE-Juel1)159254
|b 0
|e Corresponding author
245 _ _ |a In-Gap States and Band-Like Transport in Memristive Devices
260 _ _ |a Washington, DC
|c 2019
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547623399_15236
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Point defects such as oxygen vacancies cause emergent phenomena such as resistive switching in transition-metal oxides, but their influence on the electron-transport properties is far from being understood. Here, we employ direct mapping of the electronic structure of a memristive device by spectromicroscopy. We find that oxygen vacancies result in in-gap states that we use as input for single-band transport simulations. Because the in-gap states are situated below the Fermi level, they do not contribute to the current directly but impact the shape of the conduction band. Accordingly, we can describe our devices with band-like transport and tunneling across the Schottky barrier at the interface.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Funck, Carsten
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Locatelli, Andrea
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Menteş, Tevfik Onur
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Genuzio, Francesca
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Heisig, Thomas
|0 P:(DE-Juel1)169605
|b 5
|u fzj
700 1 _ |a Hensling, Felix
|0 P:(DE-Juel1)165926
|b 6
|u fzj
700 1 _ |a Raab, Nicolas
|0 P:(DE-Juel1)157925
|b 7
700 1 _ |a Schneider, Claus M.
|0 P:(DE-Juel1)130948
|b 8
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 9
|u fzj
700 1 _ |a Waser, Rainer
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 11
|u fzj
773 _ _ |a 10.1021/acs.nanolett.8b03023
|g p. acs.nanolett.8b03023
|0 PERI:(DE-600)2048866-X
|n 1
|p 54-60
|t Nano letters
|v 19
|y 2019
|x 1530-6992
856 4 _ |u https://juser.fz-juelich.de/record/856921/files/Invoice%281%29.pdf
856 4 _ |u https://juser.fz-juelich.de/record/856921/files/acs.nanolett.8b03023.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/856921/files/Invoice%281%29.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/856921/files/acs.nanolett.8b03023.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:856921
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159254
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)169605
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165926
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)158062
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2017
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21