001     856927
005     20240712084604.0
024 7 _ |a 10.1021/acs.inorgchem.8b02355
|2 doi
024 7 _ |a 0020-1669
|2 ISSN
024 7 _ |a 1520-510X
|2 ISSN
024 7 _ |a pmid:30354086
|2 pmid
024 7 _ |a WOS:000449576900083
|2 WOS
024 7 _ |a altmetric:50865311
|2 altmetric
037 _ _ |a FZJ-2018-06254
082 _ _ |a 540
100 1 _ |a Murphy, Gabriel
|0 P:(DE-Juel1)176900
|b 0
|u fzj
245 _ _ |a High-Pressure Synthesis, Structural, and Spectroscopic Studies of the Ni–U–O System
260 _ _ |a Washington, DC
|c 2018
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1541430010_25761
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The first comprehensive structural study of the Ni–U–O system is reported. Single crystals of α-NiUO4, β-NiUO4, and NiU3O10 were synthesized, and their structures were refined—using synchrotron single-crystal X-ray diffraction data supported by X-ray absorption spectroscopic measurements. α-NiUO4 adopts an orthorhombic structure in space group Pbcn and is isostructural to CrUO4 containing corrugated two-dimensional (2D) layers of corner-sharing UO6 polyhedra and edge-sharing one-dimensional (1D) zigzag α-PbO2 rutile-like chains of NiO6 polyhedra in the [001] direction. β-NiUO4 is isostructural to MgUO4 and has an orthorhombic structure in space group Ibmm, which contains alternating 1D chains of edge-sharing UO6 and NiO6 polyhedra in the [001] direction as in regular TiO2 rutile. NiU3O10 forms a triclinic structure in space group P1̅ and is isostructural with CuU3O10, where it forms a three-dimensional (3D) framework structure built through a mixture of UO6 and UO7 polyhedra in which the NiO6 polyhedra sit isolated within the framework. X-ray absorption near-edge structure (XANES) measurements, conducted using XANES mapping of single crystals, support the presence of hexavalent uranium in the three structures. The polymorphs of NiUO4 were found to only form under high-pressure and high-temperature conditions (≥4 GPa and 700 °C). It is argued that this is a consequence of the relative size difference between the Ni2+ and U6+ cations, where the Ni2+ cation is effectively too small for the Ibmm structure and too large for the Pbcn structure to form under ambient pressure conditions. This does not appear to be an issue for NiU3O10, which forms under ambient pressure conditions, where NiO6 polyhedra sit isolated within the framework of 3D connected UO6/UO7 polyhedra. Synthesis conditions indicate that β-NiUO4 is the preferred higher-pressure phase and that the transformation to this occurs irreversibly at a temperature between 950 and 1000 °C, when P = 4 GPa. The routes toward the synthesis of the oxides and the associated structural and spectroscopic results are described with respect to the structural chemistry of the Ni–U–O system, the larger AUO4 family of oxides (A = divalent or trivalent cation), and also their relation to the rutile-related family of oxides.
536 _ _ |a 161 - Nuclear Waste Management (POF3-161)
|0 G:(DE-HGF)POF3-161
|c POF3-161
|f POF III
|x 0
536 _ _ |c HGF-YIG-Energy
|x 1
|0 G:(DE-HGF)HGF-YIG-Energy
|a Helmholtz Young Investigators Group: Energy (HGF-YIG-Energy)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kegler, Philip
|0 P:(DE-Juel1)159378
|b 1
|u fzj
700 1 _ |a Zhang, Yingjie
|0 0000-0001-6321-4696
|b 2
700 1 _ |a Zhang, Zhaoming
|0 0000-0003-3273-8889
|b 3
|e Corresponding author
700 1 _ |a Alekseev, Evgeny
|0 P:(DE-Juel1)144426
|b 4
|u fzj
700 1 _ |a de Jonge, Martin D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kennedy, Brendan J.
|0 0000-0002-7187-4579
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.inorgchem.8b02355
|g Vol. 57, no. 21, p. 13847 - 13858
|0 PERI:(DE-600)1484438-2
|n 21
|p 13847 - 13858
|t Inorganic chemistry
|v 57
|y 2018
|x 1520-510X
856 4 _ |u https://juser.fz-juelich.de/record/856927/files/acs.inorgchem.8b02355.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/856927/files/acs.inorgchem.8b02355.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:856927
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176900
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159378
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144426
913 1 _ |a DE-HGF
|l Nukleare Entsorgung und Sicherheit sowie Strahlenforschung
|1 G:(DE-HGF)POF3-160
|0 G:(DE-HGF)POF3-161
|2 G:(DE-HGF)POF3-100
|v Nuclear Waste Management
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INORG CHEM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21