000856971 001__ 856971
000856971 005__ 20220930130200.0
000856971 0247_ $$2doi$$a10.5194/acp-18-15859-2018
000856971 0247_ $$2ISSN$$a1680-7316
000856971 0247_ $$2ISSN$$a1680-7324
000856971 0247_ $$2ISSN$$a=
000856971 0247_ $$2ISSN$$aAtmospheric
000856971 0247_ $$2ISSN$$achemistry
000856971 0247_ $$2ISSN$$aand
000856971 0247_ $$2ISSN$$aphysics
000856971 0247_ $$2ISSN$$a(Online)
000856971 0247_ $$2Handle$$a2128/19914
000856971 0247_ $$2WOS$$aWOS:000449479300001
000856971 0247_ $$2altmetric$$aaltmetric:50856254
000856971 037__ $$aFZJ-2018-06261
000856971 082__ $$a550
000856971 1001_ $$0P:(DE-Juel1)169305$$aWu, Xue$$b0$$eCorresponding author
000856971 245__ $$aLong-range transport of volcanic aerosol from the 2010 Merapi tropical eruption to Antarctica
000856971 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000856971 3367_ $$2DRIVER$$aarticle
000856971 3367_ $$2DataCite$$aOutput Types/Journal article
000856971 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1546868980_23650
000856971 3367_ $$2BibTeX$$aARTICLE
000856971 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856971 3367_ $$00$$2EndNote$$aJournal Article
000856971 520__ $$aVolcanic sulfate aerosol is an important source of sulfur for Antarctica, where other local sources of sulfur are rare. Midlatitude and high-latitude volcanic eruptions can directly influence the aerosol budget of the polar stratosphere. However, tropical eruptions can also enhance polar aerosol load following long-range transport. In the present work, we analyze the volcanic plume of a tropical eruption, Mount Merapi in 2010, and investigate the transport pathway of the volcanic aerosol from the tropical tropopause layer (TTL) to the lower stratosphere over Antarctica. We use the Lagrangian particle dispersion model Massive-Parallel Trajectory Calculations (MPTRAC) and Atmospheric Infrared Sounder (AIRS) SO2 measurements to reconstruct the altitude-resolved SO2 injection time series during the explosive eruption period and simulate the transport of the volcanic plume using the MPTRAC model. AIRS SO2 and aerosol measurements, the aerosol cloud index values provided by Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), are used to verify and complement the simulations. The Lagrangian transport simulation of the volcanic plume is compared with MIPAS aerosol measurements and shows good agreement. Both the simulations and the observations presented in this study suggest that volcanic plumes from the Merapi eruption were transported to the south of 60°S 1 month after the eruption and even further to Antarctica in the following months. This relatively fast meridional transport of volcanic aerosol was mainly driven by quasi-horizontal mixing from the TTL to the extratropical lower stratosphere, and most of the quasi-horizontal mixing occurred between the isentropic surfaces of 360 to 430K. When the plume went to Southern Hemisphere high latitudes, the polar vortex was displaced from the South Pole, so that the volcanic plume was carried to the South Pole without penetrating the polar vortex. Although only 4% of the sulfur injected by the Merapi eruption was transported into the lower stratosphere south of 60°S, the Merapi eruption contributed up to 8800t of sulfur to the Antarctic lower stratosphere. This indicates that the long-range transport under favorable meteorological conditions enables a moderate tropical volcanic eruption to be an important remote source of sulfur for the Antarctic stratosphere.
000856971 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000856971 588__ $$aDataset connected to CrossRef
000856971 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b1
000856971 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b2
000856971 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-15859-2018$$gVol. 18, no. 21, p. 15859 - 15877$$n21$$p15859 - 15877$$tAtmospheric chemistry and physics$$v18$$x1680-7324$$y2018
000856971 8564_ $$uhttps://juser.fz-juelich.de/record/856971/files/invoice_Helmholtz-PUC-2019-7.pdf
000856971 8564_ $$uhttps://juser.fz-juelich.de/record/856971/files/acp-18-15859-2018.pdf$$yOpenAccess
000856971 8564_ $$uhttps://juser.fz-juelich.de/record/856971/files/acp-18-15859-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856971 8564_ $$uhttps://juser.fz-juelich.de/record/856971/files/invoice_Helmholtz-PUC-2019-7.pdf?subformat=pdfa$$xpdfa
000856971 8767_ $$8Helmholtz-PUC-2019-7$$92019-01-03$$d2019-01-07$$eAPC$$jZahlung erfolgt
000856971 909CO $$ooai:juser.fz-juelich.de:856971$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000856971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169305$$aForschungszentrum Jülich$$b0$$kFZJ
000856971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b1$$kFZJ
000856971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b2$$kFZJ
000856971 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000856971 9141_ $$y2018
000856971 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856971 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000856971 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856971 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000856971 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000856971 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000856971 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856971 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856971 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856971 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000856971 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000856971 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000856971 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000856971 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856971 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856971 920__ $$lyes
000856971 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000856971 980__ $$ajournal
000856971 980__ $$aVDB
000856971 980__ $$aI:(DE-Juel1)JSC-20090406
000856971 980__ $$aAPC
000856971 980__ $$aUNRESTRICTED
000856971 9801_ $$aAPC
000856971 9801_ $$aFullTexts