000856981 001__ 856981
000856981 005__ 20230515091802.0
000856981 0247_ $$2doi$$a10.1038/s41386-018-0258-7
000856981 0247_ $$2ISSN$$a0893-133X
000856981 0247_ $$2ISSN$$a1740-634X
000856981 0247_ $$2Handle$$a2128/21724
000856981 0247_ $$2pmid$$apmid:30390065
000856981 0247_ $$2WOS$$aWOS:000458386200012
000856981 0247_ $$2altmetric$$aaltmetric:50635788
000856981 037__ $$aFZJ-2018-06270
000856981 082__ $$a610
000856981 1001_ $$0P:(DE-Juel1)166508$$aKruppa, Jana$$b0
000856981 245__ $$aNeural modulation of social reinforcement learning by intranasal oxytocin in male adults with high-functioning autism spectrum disorder: a randomized trial
000856981 260__ $$aBasingstoke$$bNature Publishing Group84063$$c2019
000856981 3367_ $$2DRIVER$$aarticle
000856981 3367_ $$2DataCite$$aOutput Types/Journal article
000856981 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1550841014_6684
000856981 3367_ $$2BibTeX$$aARTICLE
000856981 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856981 3367_ $$00$$2EndNote$$aJournal Article
000856981 520__ $$aReduced social motivation is a hallmark of individuals with autism spectrum disorders (ASDs). Although the exact neural mechanisms are unclear, oxytocin has been shown to enhance motivation and attention to social stimuli, suggesting a potential to augment social reinforcement learning as the central mechanism of behavioral interventions in ASD. We tested how reinforcement learning in social contexts and associated reward prediction error (RPE) signals in the nucleus accumbens (NAcc) were modulated by intranasal oxytocin. Male adults with a childhood diagnosis of ASD (n = 15) and healthy controls (n = 24; aged 18–26 years) performed a probabilistic reinforcement learning task during functional magnetic resonance imaging in a single-center (research center in Germany), randomized double-blind, placebo-controlled cross-over trial. The interventions were intranasal oxytocin (Syntocinon®, Novartis; 10 puffs = 20 international units (IUs) per treatment) and placebo spray. Using computational modeling of behavioral data, trial-by-trial RPE signals were assessed and related to brain activation in NAcc during reinforcing feedback in social and non-social contexts. The order of oxytocin/placebo was randomized for 60 participants. Twenty-one participants were excluded from analyses, leaving 39 for the final analysis. Behaviorally, individuals with ASD showed enhanced learning under oxytocin when the learning target as well as feedback was social as compared to non-social (social vs. non-social target: 87.09% vs. 71.29%, 95% confidence interval (CI): 7.28–24.33, p = .003; social vs. non-social feedback: 81.00% vs. 71.29%, 95% CI: 2.81–16.61, p = .027). Correspondingly, oxytocin enhanced the correlation of the RPE signal with NAcc activation during social (vs. non-social) feedback in ASD (3.48 vs. −1.12, respectively, 95% CI: 2.98–6.22, p = .000), whereas in controls, this effect was found in the placebo condition (2.90 vs. −1.14, respectively, 95% CI: 1.07–7.01, p = .010). In ASD, a similar pattern emerged when the learning target was social (3.00 vs. −0.64, respectively, 95% CI: −0.13 to 7.41, p = .057), whereas controls showed a reduced correlation for social learning targets under oxytocin (−0.70 vs. 2.72, respectively, 95% CI: −5.86 to 0.98, p = .008). The current data suggest that intranasal oxytocin has the potential to enhance social reinforcement learning in ASD. Future studies are warranted that investigate whether oxytocin can potentiate social learning when combined with behavioral therapies, resulting in greater treatment benefits than traditional behavior-only approaches.
000856981 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000856981 542__ $$2Crossref$$i2018-11-02$$uhttp://www.springer.com/tdm
000856981 588__ $$aDataset connected to CrossRef
000856981 7001_ $$0P:(DE-Juel1)157932$$aGossen, Anna$$b1
000856981 7001_ $$0P:(DE-HGF)0$$aWeiß, Eileen Oberwelland$$b2
000856981 7001_ $$0P:(DE-HGF)0$$aKohls, Gregor$$b3
000856981 7001_ $$0P:(DE-HGF)0$$aGroßheinrich, Nicola$$b4
000856981 7001_ $$0P:(DE-HGF)0$$aCholemkery, Hannah$$b5
000856981 7001_ $$0P:(DE-HGF)0$$aFreitag, Christine M.$$b6
000856981 7001_ $$0P:(DE-HGF)0$$aKarges, Wolfram$$b7
000856981 7001_ $$0P:(DE-HGF)0$$aWölfle, Elke$$b8
000856981 7001_ $$0P:(DE-HGF)0$$aSinzig, Judith$$b9
000856981 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b10
000856981 7001_ $$0P:(DE-HGF)0$$aHerpertz-Dahlmann, Beate$$b11
000856981 7001_ $$0P:(DE-Juel1)174172$$aKonrad, Kerstin$$b12
000856981 7001_ $$0P:(DE-Juel1)131741$$aSchulte-Rüther, Martin$$b13$$eCorresponding author
000856981 77318 $$2Crossref$$3journal-article$$a10.1038/s41386-018-0258-7$$bSpringer Science and Business Media LLC$$d2018-11-02$$n4$$p749-756$$tNeuropsychopharmacology$$v44$$x0893-133X$$y2018
000856981 773__ $$0PERI:(DE-600)2008300-2$$a10.1038/s41386-018-0258-7$$n4$$p749-756$$tNeuropsychopharmacology$$v44$$x0893-133X$$y2018
000856981 8564_ $$uhttps://juser.fz-juelich.de/record/856981/files/Kruppa_2018_Postprint_Neuropsychopharmacology_Neural%20modulation%20of%20social%20reinforcement%20learning%20by%20intranasal%20oxytocin%20in%20male%20adults.pdf$$yPublished on 2018-11-02. Available in OpenAccess from 2019-05-02.
000856981 8564_ $$uhttps://juser.fz-juelich.de/record/856981/files/s41386-018-0258-7.pdf$$yRestricted
000856981 8564_ $$uhttps://juser.fz-juelich.de/record/856981/files/Kruppa_2018_Postprint_Neuropsychopharmacology_Neural%20modulation%20of%20social%20reinforcement%20learning%20by%20intranasal%20oxytocin%20in%20male%20adults.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-11-02. Available in OpenAccess from 2019-05-02.
000856981 8564_ $$uhttps://juser.fz-juelich.de/record/856981/files/s41386-018-0258-7.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856981 909CO $$ooai:juser.fz-juelich.de:856981$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000856981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166508$$aForschungszentrum Jülich$$b0$$kFZJ
000856981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157932$$aForschungszentrum Jülich$$b1$$kFZJ
000856981 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)157932$$a INM-3$$b1
000856981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000856981 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-3$$b2
000856981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000856981 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-3$$b4
000856981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b10$$kFZJ
000856981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174172$$aForschungszentrum Jülich$$b12$$kFZJ
000856981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131741$$aForschungszentrum Jülich$$b13$$kFZJ
000856981 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000856981 9141_ $$y2019
000856981 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856981 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000856981 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856981 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000856981 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROPSYCHOPHARMACOL : 2015
000856981 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856981 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856981 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856981 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856981 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROPSYCHOPHARMACOL : 2015
000856981 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000856981 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000856981 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856981 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000856981 920__ $$lyes
000856981 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000856981 980__ $$ajournal
000856981 980__ $$aVDB
000856981 980__ $$aUNRESTRICTED
000856981 980__ $$aI:(DE-Juel1)INM-3-20090406
000856981 9801_ $$aFullTexts
000856981 999C5 $$1SG Shamay-Tsoory$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.biopsych.2015.07.020$$p194 -$$tBiol Psychiatry$$uShamay-Tsoory SG, Abu-Akel A. The social salience hypothesis of oxytocin. Biol Psychiatry. 2016;79:194–202.$$v79$$y2016
000856981 999C5 $$1LA Vismara$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.clinpsy.121208.131151$$p447 -$$tAnnu Rev Clin Psychol$$uVismara LA, Rogers SJ. Behavioral treatments in autism spectrum disorder: what do we know? Annu Rev Clin Psychol. 2010;6:447–68.$$v6$$y2010
000856981 999C5 $$1CM Freitag$$2Crossref$$9-- missing cx lookup --$$a10.1111/jcpp.12509$$p596 -$$tJ Child Psychol Psychiatry$$uFreitag CM, Jensen K, Elsuni L, Sachse M, Herpertz-Dahlmann B, Schulte-Rüther M, et al. Group-based cognitive behavioural psychotherapy for children and adolescents with ASD: the randomized, multicentre, controlled SOSTA—Net Trial. J Child Psychol Psychiatry. 2016;57:596–605.$$v57$$y2016
000856981 999C5 $$1W Schultz$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.psych.56.091103.070229$$p87 -$$tAnnu Rev Psychol$$uSchultz W. Behavioral theories and the neurophysiology of reward. Annu Rev Psychol. 2006;57:87–115.$$v57$$y2006
000856981 999C5 $$1J Gläscher$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2010.04.016$$p585 -$$tNeuron$$uGläscher J, Daw N, Dayan P, O’Doherty JP. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron. 2010;66:585–95.$$v66$$y2010
000856981 999C5 $$1TA Baskerville$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1755-5949.2010.00154.x$$p92 -$$tCNS Neurosci Ther$$uBaskerville TA, Douglas AJ. Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders. CNS Neurosci Ther. 2010;16:92–123.$$v16$$y2010
000856981 999C5 $$1G Dölen$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature12518$$p179 -$$tNature$$uDölen G, Darvishzadeh A, Huang KW, Malenka RC. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature. 2013;501:179–84.$$v501$$y2013
000856981 999C5 $$1J Hu$$2Crossref$$9-- missing cx lookup --$$a10.1002/hbm.22760$$p2132 -$$tHum Brain Mapp$$uHu J, Qi S, Becker B, Luo L, Gao S, Gong Q, et al. Oxytocin selectively facilitates learning with social feedback and increases activity and functional connectivity in emotional memory and reward processing regions. Hum Brain Mapp. 2015;36:2132–46.$$v36$$y2015
000856981 999C5 $$1TM Kranz$$2Crossref$$9-- missing cx lookup --$$a10.1002/aur.1597$$p1036 -$$tAutism Res$$uKranz TM, Kopp M, Waltes R, Sachse M, Duketis E, Jarczok TA, et al. Meta-analysis and association of two common polymorphisms of the human oxytocin receptor gene in autism spectrum disorder. Autism Res. 2016;9:1036–45.$$v9$$y2016
000856981 999C5 $$1A Napoli Di$$2Crossref$$9-- missing cx lookup --$$a10.1186/2040-2392-5-48$$tMol Autism$$uDi Napoli A, Warrier V, Baron-Cohen S, Chakrabarti B. Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger Syndrome. Mol Autism. 2014;5:48.$$v5$$y2014
000856981 999C5 $$1A Alabdali$$2Crossref$$9-- missing cx lookup --$$a10.1186/1742-2094-11-4$$tJ Neuroinflamm$$uAlabdali A, Al-Ayadhi L, El-Ansary A. Association of social and cognitive impairment and biomarkers in autism spectrum disorders. J Neuroinflamm. 2014;11:4.$$v11$$y2014
000856981 999C5 $$1H Harony-Nicolas$$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.18904$$pe18904 -$$teLife$$uHarony-Nicolas H, Kay M, Hoffmann J, du Klein ME, Bozdagi-Gunal O, Riad M. et al. Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat. eLife. 2017;6:e18904$$v6$$y2017
000856981 999C5 $$1AJ Guastella$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.biopsych.2009.09.020$$p692 -$$tBiol Psychiatry$$uGuastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ, et al. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry. 2010;67:692–4.$$v67$$y2010
000856981 999C5 $$1G Domes$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.biopsych.2013.02.007$$p164 -$$tBiol Psychiatry$$uDomes G, Heinrichs M, Kumbier E, Grossmann A, Hauenstein K, Herpertz SC. Effects of intranasal oxytocin on the neural basis of face processing in autism spectrum disorder. Biol Psychiatry. 2013;74:164–71.$$v74$$y2013
000856981 999C5 $$1I Gordon$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1312857110$$p20953 -$$tProc Natl Acad Sci USA$$uGordon I, Vander Wyk BC, Bennett RH, Cordeaus C, Lucas MV, Eilbott JA, et al. Oxytocin enhances brain function in children with autism. Proc Natl Acad Sci USA. 2013;110:20953–8.$$v110$$y2013
000856981 999C5 $$1I Gordon$$2Crossref$$9-- missing cx lookup --$$a10.1038/srep35054$$tSci Rep$$uGordon I, Jack A, Pretzsch CM, Vander Wyk B, Leckman JF, Feldman R, et al. Intranasal oxytocin enhances connectivity in the neural circuitry supporting social motivation and social perception in children with autism. Sci Rep. 2016;6:35054.$$v6$$y2016
000856981 999C5 $$1AJ Guastella$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.biopsych.2015.06.028$$p234 -$$tBiol Psychiatry$$uGuastella AJ, Hickie IB. Oxytocin treatment, circuitry, and autism: a critical review of the literature placing oxytocin into the autism context. Biol Psychiatry. 2016;79:234–42.$$v79$$y2016
000856981 999C5 $$1MR Dadds$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10803-013-1899-3$$p521 -$$tJ Autism Dev Disord$$uDadds MR, MacDonald E, Cauchi A, Williams K, Levy F, Brennan J. Nasal oxytocin for social deficits in childhood autism: a randomized controlled trial. J Autism Dev Disord. 2014;44:521–31.$$v44$$y2014
000856981 999C5 $$1A Salonia$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.yhbeh.2004.10.002$$p164 -$$tHorm Behav$$uSalonia A, Nappi RE, Pontillo M, Daverio R, Smeraldi A, Briganti A, et al. Menstrual cycle-related changes in plasma oxytocin are relevant to normal sexual function in healthy women. Horm Behav. 2005;47:164–9.$$v47$$y2005
000856981 999C5 $$1E Anagnostou$$2Crossref$$9-- missing cx lookup --$$a10.1186/2040-2392-3-16$$tMol Autism$$uAnagnostou E, Soorya L, Chaplin W, Bartz J, Halpern D, Wasserman S, et al. Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: a randomized controlled trial. Mol Autism. 2012;3:16.$$v3$$y2012
000856981 999C5 $$1Y Aoki$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awu231$$p3073 -$$tBrain$$uAoki Y, Yahata N, Watanabe T, Takano Y, Kawakubo Y, Kuwabara H, et al. Oxytocin improves behavioural and neural deficits in inferring others’ social emotions in autism. Brain. 2014;137:3073–86.$$v137$$y2014
000856981 999C5 $$1M South$$2Crossref$$9-- missing cx lookup --$$a10.1002/aur.1764$$p1215 -$$tAutism Res$$uSouth M, Carr ALW, Stephenson KG, Maisel ME, Cox JC. Symptom overlap on the SRS-2 adult self-report between adults with ASD and adults with high anxiety. Autism Res. 2017;10:1215–20.$$v10$$y2017
000856981 999C5 $$1N Striepens$$2Crossref$$9-- missing cx lookup --$$a10.1038/srep03440$$tSci Rep$$uStriepens N, Kendrick KM, Hanking V, Landgraf R, Wüllner U, Maier W, et al. Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Sci Rep. 2013;3:3440.$$v3$$y2013
000856981 999C5 $$1R Hurlemann$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.5538-09.2010$$p4999 -$$tJ Neurosci$$uHurlemann R, Patin A, Onur O, Cohen MX, Baumgartner T, Metzler S, et al. Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J Neurosci. 2010;30:4999–5007.$$v30$$y2010
000856981 999C5 $$1G Kohls$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuropsychologia.2013.07.020$$p2062 -$$tNeuropsychologia$$uKohls G, Perino MT, Taylor JM, Madva EN, Cayless SJ, Troiani V, et al. The nucleus accumbens is involved in both the pursuit of social reward and the avoidance of social punishment. Neuropsychologia. 2013;51:2062–9.$$v51$$y2013
000856981 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/acprof:oso/9780199600434.003.0001$$uDaw N. Trial-by-trial data analysis using computational models. In: Delgado MR, Phelps EA, Robbins TW, editors. Decision making, affect, and learning: attention and performance XXIII. UK: Oxford University Press; 2011. p. 3–38.
000856981 999C5 $$1BB Averbeck$$2Crossref$$9-- missing cx lookup --$$a10.1038/nn.4506$$p505 -$$tNat Neurosci$$uAverbeck BB, Costa VD. Motivational neural circuits underlying reinforcement learning. Nat Neurosci. 2017;20:505–12.$$v20$$y2017
000856981 999C5 $$1Y Kunisato$$2Crossref$$uKunisato Y, Okada G, Okamoto Y. Reinforcement learning by striatum. Brain Nerve. 2009;61:405–11.$$y2009
000856981 999C5 $$1SE Groppe$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.biopsych.2012.12.023$$p172 -$$tBiol Psychiatry$$uGroppe SE, Gossen A, Rademacher L, Hahn A, Westphal L, Gründer G, et al. Oxytocin influences processing of socially relevant cues in the ventral tegmental area of the human brain. Biol Psychiatry. 2013;74:172–9.$$v74$$y2013
000856981 999C5 $$1G Domes$$2Crossref$$9-- missing cx lookup --$$a10.1038/npp.2013.254$$p698 -$$tNeuropsychopharmacology$$uDomes G, Kumbier E, Heinrichs M, Herpertz SC. Oxytocin promotes facial emotion recognition and amygdala reactivity in adults with Asperger Syndrome. Neuropsychopharmacology. 2014;39:698–706.$$v39$$y2014
000856981 999C5 $$1S Evans$$2Crossref$$9-- missing cx lookup --$$a10.1038/npp.2010.110$$p2502 -$$tNeuropsychopharmacology$$uEvans S, Shergill SS, Averbeck BB. Oxytocin decreases aversion to angry faces in an associative learning task. Neuropsychopharmacology. 2010;35:2502–9.$$v35$$y2010
000856981 999C5 $$1W Schultz$$2Crossref$$9-- missing cx lookup --$$a10.1152/jn.1998.80.1.1$$p1 -$$tJ Neurophysiol$$uSchultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80:1–27.$$v80$$y1998
000856981 999C5 $$1AA Scott-Van Zeeland$$2Crossref$$uScott-Van Zeeland AA, Dapretto M, Ghahremani DG, Poldrack RA, Bookheimer SY. Reward processing in autism. Autism Res. 2010;3:53–67.$$y2010
000856981 999C5 $$1G Kohls$$2Crossref$$9-- missing cx lookup --$$a10.1093/scan/nss033$$p565 -$$tSoc Cogn Affect Neurosci$$uKohls G, Schulte-Rüther M, Nehrkorn B, Müller K, Fink GR, Kamp-Becker I, et al. Reward system dysfunction in autism spectrum disorders. Soc Cogn Affect Neurosci. 2013;8:565–72.$$v8$$y2013
000856981 999C5 $$1C Chevallier$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tics.2012.02.007$$p231 -$$tTrends Cogn Sci$$uChevallier C, Kohls G, Troiani V, Brodkin ES, Schultz RT. The Social Motivation Theory of autism. Trends Cogn Sci. 2012;16:231–9.$$v16$$y2012
000856981 999C5 $$1RA Depue$$2Crossref$$uDepue RA, Morrone-Strupinsky JV. A neurobehavioral model of affiliative bonding: implications for conceptualizing a human trait of affiliation. Behav Brain Sci. 2005;28:313–50.$$y2005
000856981 999C5 $$1DH Skuse$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tics.2008.09.007$$p27 -$$tTrends Cogn Sci$$uSkuse DH, Gallagher L. Dopaminergic–neuropeptide interactions in the social brain. Trends Cogn Sci. 2009;13:27–35.$$v13$$y2009
000856981 999C5 $$1AH Kemp$$2Crossref$$9-- missing cx lookup --$$a10.1177/0963721411417547$$p222 -$$tCurr Dir Psychol Sci$$uKemp AH, Guastella AJ. The role of oxytocin in human affect: a novel hypothesis. Curr Dir Psychol Sci. 2011;20:222–31.$$v20$$y2011
000856981 999C5 $$1SM Gorka$$2Crossref$$uGorka SM, Fitzgerald DA, de Wit H, Phan KL. Cannabinoid modulation of amygdala subregion functional connectivity to social signals of threat. Int J Neuropsychopharmacol. 2014;18:1–6.$$y2014
000856981 999C5 $$1M Kanat$$2Crossref$$9-- missing cx lookup --$$a10.1038/npp.2015.111$$p2632 -$$tNeuropsychopharmacology$$uKanat M, Heinrichs M, Mader I, Tebartz van Elst L, Domes G. Oxytocin modulates amygdala reactivity to masked fearful eyes. Neuropsychopharmacology. 2015;40:2632–8.$$v40$$y2015
000856981 999C5 $$1AJ Rosenfeld$$2Crossref$$9-- missing cx lookup --$$a10.1093/schbul/sbq015$$p1077 -$$tSchizophr Bull$$uRosenfeld AJ, Lieberman JA, Jarskog LF. Oxytocin, dopamine, and the amygdala: a neurofunctional model of social cognitive deficits in schizophrenia. Schizophr Bull. 2011;37:1077–87.$$v37$$y2011
000856981 999C5 $$1G Kohls$$2Crossref$$9-- missing cx lookup --$$a10.1186/1744-9081-5-20$$tBehav Brain Funct$$uKohls G, Herpertz-Dahlmann B, Konrad K. Hyperresponsiveness to social rewards in children and adolescents with attention-deficit/hyperactivity disorder (ADHD). Behav Brain Funct. 2009;5:20.$$v5$$y2009
000856981 999C5 $$1CJ Yatawara$$2Crossref$$9-- missing cx lookup --$$a10.1038/mp.2015.162$$p1225 -$$tMol Psychiatry$$uYatawara CJ, Einfeld SL, Hickie IB, Davenport TA, Guastella AJ. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mol Psychiatry. 2016;21:1225–31.$$v21$$y2016