001     857022
005     20230310131341.0
024 7 _ |a 10.1016/j.cpc.2018.10.008
|2 doi
024 7 _ |a 0010-4655
|2 ISSN
024 7 _ |a 1386-9485
|2 ISSN
024 7 _ |a 1879-2944
|2 ISSN
024 7 _ |a 2128/21487
|2 Handle
024 7 _ |a WOS:000458227100003
|2 WOS
024 7 _ |a altmetric:38320787
|2 altmetric
037 _ _ |a FZJ-2018-06303
082 _ _ |a 530
100 1 _ |a Krieg, Stefan
|0 P:(DE-Juel1)132171
|b 0
|e Corresponding author
245 _ _ |a Accelerating Hybrid Monte Carlo simulations of the Hubbard model on the hexagonal lattice
260 _ _ |a Amsterdam
|c 2019
|b North Holland Publ. Co.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548859848_28074
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present different methods to increase the performance of Hybrid Monte Carlo simulations of the Hubbard model in two-dimensions. Our simulations concentrate on a hexagonal lattice, though can be easily generalized to other lattices. It is found that best results can be achieved using a flexible GMRES solver for matrix inversions and the second order Omelyan integrator with Hasenbusch acceleration on different time scales for molecular dynamics. We demonstrate how an arbitrary number of Hasenbusch mass terms can be included into this geometry and find that the optimal speed depends weakly on the choice of the number of Hasenbusch masses and their values. As such, the tuning of these masses is amenable to automization and we present an algorithm for this tuning that is based on the knowledge of the dependence of solver time and forces on the Hasenbusch masses. We benchmark our algorithms to systems where direct numerical diagonalization is feasible and find excellent agreement. We also simulate systems with hexagonal lattice dimensions up to 102 × 102 and Nt=64 . We find that the Hasenbusch algorithm leads to a speed up of more than an order of magnitude.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
536 _ _ |a DFG project 35592816 - TRR 55: Hadronenphysik mit Gitter-QCD (35592816)
|0 G:(GEPRIS)35592816
|c 35592816
|x 1
536 _ _ |a DEEP-EST - DEEP - Extreme Scale Technologies (754304)
|0 G:(EU-Grant)754304
|c 754304
|x 2
|f H2020-FETHPC-2016
536 _ _ |a DEEP-ER - DEEP Extended Reach (610476)
|0 G:(EU-Grant)610476
|c 610476
|x 3
|f FP7-ICT-2013-10
536 _ _ |a DEEP - Dynamical Exascale Entry Platform (287530)
|0 G:(EU-Grant)287530
|c 287530
|x 4
|f FP7-ICT-2011-7
536 _ _ |a PRACE-5IP - PRACE 5th Implementation Phase Project (730913)
|0 G:(EU-Grant)730913
|c 730913
|x 5
|f H2020-EINFRA-2016-1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Luu, Thomas
|0 P:(DE-Juel1)159481
|b 1
700 1 _ |a Ostmeyer, Johann
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Papaphilippou, Philippos
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Urbach, Carsten
|0 0000-0003-1412-7582
|b 4
773 _ _ |a 10.1016/j.cpc.2018.10.008
|g p. S0010465518303564
|0 PERI:(DE-600)1466511-6
|p 15-25
|t Computer physics communications
|v 236
|y 2019
|x 0010-4655
856 4 _ |u https://juser.fz-juelich.de/record/857022/files/W1477057.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/857022/files/1804.07195.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/857022/files/W1477057.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/857022/files/1804.07195.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:857022
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132171
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159481
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT PHYS COMMUN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21