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Abstract

We present different methods to increase the performance of Hybrid Monte Carlo
simulations of the Hubbard model in two-dimensions. Our simulations concen-
trate on a hexagonal lattice, though can be easily generalized to other lattices.
It is found that best results can be achieved using a flexible GMRES solver for
matrix inversions and the second order Omelyan integrator with Hasenbusch
acceleration on different time scales for molecular dynamics. We demonstrate
how an arbitrary number of Hasenbusch mass terms can be included into this
geometry and find that the optimal speed depends weakly on the choice of the
number of Hasenbusch masses and their values. As such, the tuning of these
masses is amenable to automization and we present an algorithm for this tuning
that is based on the knowledge of the dependence of solver time and forces on
the Hasenbusch masses. We benchmark our algorithms to systems where direct
numerical diagonalization is feasible and find excellent agreement. We also sim-
ulate systems with hexagonal lattice dimensions up to 102× 102 and Nt = 64.
We find that the Hasenbusch algorithm leads to a speed up of more than an
order of magnitude.

Keywords: Hybrid Monte Carlo, Hubbard model, Graphene, Auto–tuner

1. Introduction

The Hubbard model has been used to describe many interesting phenomena
relevant to low-dimensional solid-state materials, such as Mott insulating be-
haviour, anti-ferromagnetic order, etc. For the one-dimensional system, under
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the Bethe Ansatz [1], there is no first-order transition between an insulating
and conducting state. For two-dimensions (and higher), such a transition is
expected to occur at some critical coupling, but to date the exact value of this
coupling is unknown. For weak coupling below the critical coupling, standard
perturbative many-body techniques have been applied to this system [2]. But
for coupling near or above the critical coupling, very little is known analytically
about the Hubbard model in these higher dimensions (see, e.g. [3]). What is
known has been deduced from numerical simulations, such as via Random Phase
Approximation [4], mean field theories [5], cluster theories [6], or functional
renormalization group techniques [7, 8]. Recent calculations on modest system
sizes have utilized Quantum Monte Carlo (QMC) techniques[4, 9, 10, 11, 12].
These QMC calculations employ either the Hybrid Monte Carlo (HMC) al-
gorithm [13], a method used extensively in lattice quantum chromodynamics
(QCD)[14, 15, 16, 17], or the BSS algorithm[18] which is more prevalent in the
condensed matter community [19, 20]. In [20] lattices as large as 36 × 36 were
simulated, providing the most precise value of the critical coupling in which a
Mott insulating phase occurs. The largest hexagonal lattice sizes simulated to
date are 48× 48 with Nt = 80 timesteps [21]1.

Many of these studies have been further motivated by the discovery of
graphene, first isolated in 2004 by Andre Geim and Konstantin Novoselov. Con-
sisting of carbon ions within an hexagonal lattice, graphene’s unique electrical,
thermal, and mechanical properties make it a prime candidate (as well as its
derivatives, e.g. carbon nanotubes, ribbons, bi-layers) for next generation elec-
trical devices. Numerical simulations of this system (via the Hubbard model
and Hamiltonians with more sophisticated electron-electron interactions[22])
will play an essential role in quantifying graphene’s (and its allotropes’) electrical
properties within macroscopic volumes. The ability to simulate these systems
at these scales is, therefore, of prime importance.

The aim of this work is to describe our investigations for speeding up HMC
simulations of the Hubbard model on an hexagonal lattice, as well as systems
based off this geometry, such as graphene and carbon nanotubes. By utilising
techniques originally developed in the lattice QCD community, we are able to
obtain a speedup of more than an order of magnitude in some cases. This has
allowed us to simulate on system sizes as large as 102 × 102 using single-node
runs. In the following section we give a cursory description of the system and
its underlying Hamiltonian. Section 3 and section 4 describe our solvers2 and
integrators used when integrating our equations of motions, respectively. In

1The total number of lattice sites for an n × m hexagonal lattice is 2nm. The total
dimension of a simulated system includes the number of timesteps Nt and is 2nmNt.

2We note the recent development of an efficient direct solver via Shur complement [23].
However our work targets system sizes that are much larger than the lattices for which the
Schur complement solver is feasible. Ref. [23] argues that a standard CG solver becomes
preferable to Shur complement for systems larger than approximately (70× 70) unit cells. As
our algorithm is much more efficient than standard CG solver we expect it to be faster than
Schur complement at even smaller lattices.
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Figure 1: Honeycomb lattice of graphene. One red and one black adjacent points form a basis
of the triangular Bravais lattice.

section 5 we describe our multi-shift solvers, where we provide the scaling and
dependence of our algorithms with the Hasenbusch3 masses. The following sec-
tion provides our algorithm for the autotuning of these masses, as well as other
relevant parameters to our simulations. We demonstrate the speedup of our sim-
ulations due to the Hasenbusch solvers in section 8. Here we also benchmark
our simulation to the exact solutions from a 4-site problem, ensuring that our
solver implementations simulate correct physics. We end with a recapitulation
of our findings in section 9.

2. The system

The honeycomb lattice, i.e. a lattice of rhombus-shaped unit cells with a
basis of two atoms, consists of two underlying triangle lattices as depicted in
figure 1. This bipartite structure means that any site of one sublattice has three
nearest neighbours from the other sublattice. The minimal unit cell, from which
the hexagonal lattice is tessellated, consists of two sites A and B, each coming
from one of the sublattices. For this work, the orientation of the unit cell is
chosen in such a way that the distance between A- and B-site is exactly (a , 0)

T

where a is the lattice spacing.
In order to investigate the basic properties of the Hubbard model in this

geometry, Hybrid Monte Carlo4 (HMC) [13] simulations are used. The underly-
ing Hamiltonian, after Hubbard-Stratonovich transformation and introduction
of pseudofermions[17], is

H =
1

2
φT 1

δU
φ+ χ†

(

MM†
)−1

χ+
1

2
πTπ (1)

where π is the real momentum field, φ is the real Hubbard field, χ is a com-
plex pseudofermionic vector field, δ is the step size in euclidean time dimension

3Hasenbusch acceleration is an exact preconditioning scheme first introduced in [24].
4Sometimes referred to as Hamiltonian Monte Carlo
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weighted by the inverse temperature β of the system, U is the Hubbard onsite
interaction, and M is the fermion operator (see ref. [17]) with

MAA
(x,t)(y,t′) = δxy

(

−δtt′ +
(

eiφx,t − δms

)

δt−1,t′
)

MBB
(x,t)(y,t′) = δxy

(

δtt′ −
(

e− iφx,t − δms

)

δt+1,t′
)

MAB
(x,t)(y,t′) = MBA

(x,t)(y,t′) = −δκδ〈x,y〉δt,t′ .

(2)

Here κ is the hopping parameter, δ〈x,y〉 denotes nearest neighbour connections,
and ms is the staggered mass. A nonzero ms corresponds to a broken symme-
try between A- and B-sites, as it introduces a magnetic bias where the spin-
up-electrons favour A-sites and spin-down-electrons favour B-sites or the other
way around depending on the sign of ms. All our calculations here are per-
formed with ms = 0 .(In [25] it was pointed out that certain fermion operator
discretizations with ms = 0 suffer from ergodicity issues. We stress that our dis-
cretization in eq. (2) does not suffer from these same ergodicity issues.) Details
related to the derivation of this Hamiltonian can be found in ref. [17] and [26],
where also an implementation of the standard HMC algorithm to this system
was discussed. For an n × m hexagonal lattice, we apply periodic boundary
conditions along the oblique axes, as depicted in fig. 4 of [27]. We note that for
graphene and carbon nanotube systems, κ ∼ 2.7 eV and a = 1.42 Å [28].

The Hamiltonian (1) describes two flavours of spinless fermions, which can be
interpreted either as a single electron species with spin one half or as “particles”
and “holes”. In our formalism the latter interpretation has been chosen.

We outline the basic principles of the standard HMC algorithm. The ‘con-
jugate momenta’ field π and auxiliary complex field ρ are sampled according to

Gaussian distributions e−π2/2and e−ρ†ρ, respectively. Then the pseudofermionic
field is obtained as χ = Mρ. With these starting parameters and an initial Hub-
bard field φ a molecular dynamics (MD) trajectory is calculated and the result
is accepted with the probability min

(

1, e−∆H
)

. ∆H is the difference in energy
resulting from the molecular dynamics.

3. Solver

Note that equation (1) involves a matrix “inversion” via the matrix equa-
tion

(

MM†
)

η = χ. This equation must be solved for η very often, making
it beneficial to optimize the linear solver in this case. Observe that MM† is
hermitian and positive definite. This allows us to use the Conjugate Gradient
(CG) method (see e.g. ref. [29]) to solve the linear system involved. The CG
“solver”, with relative tolerance set to 10−8 (i.e. squared tolerance 10−16), and
implemented in C++ with double precision was used initially to calculate η.

As a first step to increase the performance another CG solver was added with
single precision arithmetic. This single precision CG (spCG) has been used as
a preconditioner for the double precision CG. As the spCG with a precision
target is a non stationary solver, we have to use the flexibly preconditioned CG
(fCG) method[30]. We have tested this “mixed precision” algorithm on systems
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of different sizes. On larger systems it led to a speed up of about factor 1.9, thus
using nearly the full advantage of factor two between the bandwidths (and peak
flop rates) of single and double precision arithmetics. As a next step we replaced
the (“outer”) fCG solver by a flexible Generalized Minimal Residual (fGMRES)
solver from ref. [31]. After some fine tuning described in Appendix A, a speed
up of factor 2.2 compared to the original solver could be achieved for systems
with a total dimension 2L2Nt larger than ∼ 100 000.

On very large systems one encounters an additional advantage of the spCG
preconditioner. The size of the L3-cache is limited and eventually will be too
small to store all the vectors required for the solver in double precision. Using
single precision arithmetics gives an additional factor of two in the system size
until the memory requirements of the spCG preconditioner exceeds the size L3-
cache as well. On the compute nodes we used for testing (2× Intel(R) Xeon(R)
CPU E5-2680, 40MB Cache per node), this leads to a speed up of more than
factor 4 instead of the expected factor two. For more details on the performance
see section 8.

4. Integrators

In order to improve the calculation of the MD trajectory in the HMC sim-
ulations, we tested several different reversible, symplectic integrators5. An in-
tegrator evolves a system of coordinates φ(t) and momenta π(t) depending on
the force F (φ) by a time step ∆t. Any integrator which is linear in ∆t follows
the rules:

φi = φi−1 + ci ∆t πi−1 (3)

πi = πi−1 − di ∆t F (φi) (4)

Here (φ0, π0) = (φ(0), π(0)) and (φn, πn) = (φ(∆t), π(∆t)) with i ∈ {0, . . . , n}.
In addition the condition

∑

i ci =
∑

i di = 1 has to hold.
The most simple symmetric, thus reversible, symplectic integrator is the

“leapfrog” integrator. The leapfrog is a second order method (c1 = c2 = 1
2 ,

d1 = 1, d2 = 0 in the velocity version).

4.1. Second order Omelyan integrator

In ref. [32] it was shown that the second order integrator using c1 = c3 = ζ,
c2 = 1 − 2ζ, d1 = d2 = 1

2 , d3 = 0 with ζ ≈ 0.193, even though it requires two
force calculations, is more effective as it minimizes the leading order error term
significantly allowing for a coarser time step. The error can be estimated by
expanding the evolution of two non commutative operators a and b (in our case
they correspond to the evolution of φ and π respectively) in the form

e(a+b)h = eaζhebh/2ea(1−2ζ)hebh/2eaζh + Ch3 +O
(

h4
)

(5)

5We confined ourselves to reversible, symplectic integrators to ensure detailed balance in
our HMC algorithm[13]. Reversibility is ensured by symmetry which excludes odd order
integrators.
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and minimizing C. In general, when no assumptions are made about the oper-
ators a and b, then the commutator [a, b] is not known. In this case Omelyan
used an Euclidean norm spanned by the commutators [a, [b, a]] and [b, [b, a]]:

C = c1[a, [b, a]] + c2[b, [b, a]] (6)

⇒ ||C|| =
√

c21 + c22. (7)

The minimum has the numerical value ||C|| ≈ 0.009 when ζ = 0.193 (when
ζ = 0 or 1/2 one obtains the original leapfrog integrator with ||C0|| ≈ 0.09). As
the Omelyan integrator uses two force calculations per step the error has to be
compared at double step size leading to the error ratio

ǫOmelyan

ǫleapfrog
≈

0.009

0.09
22 = 0.4 (8)

where ǫ denotes the different errors.
We tested different values of ζ in our simulations with the Omelyan integrator

integrator and found the theoretically derived value ζ = 0.193 to be optimal,
resulting in a factor of two to three speed-up compared to the generic method.

4.2. Higher order integrators

A detailed list of symmetric symplectic integrators can be found in ref. [33].
Several 4th order integrators were analysed in our molecular dynamics calcula-
tions. As our goal was not to obtain extremely precise solutions6 but rather to
achieve a good acceptance rate with minimal cost, we did not investigate yet
higher order integrators. The acceptance is weighted by the Boltzmann factor
e−∆H where ∆H is the dimensionless deviation in energy accumulated over one
trajectory. Targeting an acceptance of about 0.66 translates to ∆H ≈ 0.42.

We found the force gradient integrator as described in ref. [34] most promis-
ing. The algorithm reads

π1 = π0 −
1

6
∆tF (φ0)

φ1 = φ0 +
1

2
∆tπ1

ϕ = φ1 −
1

24
∆t2F (φ1)

π2 = π1 −
2

3
∆tF (ϕ)

φ3 = φ2 = φ1 +
1

2
∆tπ2

π3 = π2 −
1

6
∆tF (φ2)

(9)

and has an error scaling in O
(

∆t4
)

with three force calculations per iteration.
Figure 2 shows the average absolute deviation 〈|∆H|〉 made by different inte-

6The accept/reject step renders the algorithm exact even for finite precision integrators[13].
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Figure 2: Average absolute deviation of the energy after one trajectory 〈|∆H|〉 for different
integrators depending on the cost. The Omelyan integrator requires two force calculations
per step, both 4th order integrators require three. The blue line shows a fit of the error of the
force gradient integrator.

grators for an arbitrarily chosen system. In the region of interest with the error
approximately 0.42 the force gradient integrator is comparable to the Omelyan
integrator. However, the problem here is the well known divergence of the error
with slight increase of ∆t for both algorithms. The fit alone thus does not tell
which of the integrators is preferable. In this case the Omelyan integrator seems
to be slightly more stable in the considered region but the advantage gained by
using one or the other integrator is negligible.

Our findings suggest that it really does not matter whether one uses the
Omelyan integrator or the force gradient integrator. From all inspected inte-
grators these two are the best (compare exemplary the “standard” 4th order
integrator by Forest and Ruth [35] in figure 2) and we decided to use the
Omelyan integrator because it is more flexible for modifications as described
in the following sections. In addition one should mention that due to the im-
provements stated in this article the calculation of the molecular dynamics is
not the bottleneck any more. We spend at least the same amount of time on
the measurements after having calculated the trajectories.

5. Multi-scale integration

So far, we have discussed improvements to the linear solvers and to the
integrators used in the computation of the MD trajectory. The integration
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follows Hamilton’s equations of motion

φ̇T = ∂H
∂π = πT (10)

π̇T = −∂H
∂φ = −φT 1

δU
+ 2Re

(

η†
∂M

∂φ
ξ

)

(11)

with the two complex vector fields

η =
(

MM†
)−1

χ , ξ = M†η . (12)

The computational costs are dominated by the linear solver. Further improve-
ments to the algorithm are possible by realizing that the rate of convergence
of the linear solver and thus the speed of the MD integration is given by the
condition number of the fermion matrix, i.e. it is dominated by its low eigen-
modes. The algorithmic performance of the solver has already been improved
and, while it is believed that there is still room for optimization, here a second
approach is investigated.

5.1. Splitting off the small eigenvalues of the fermion matrix

In ref. [24] Hasenbusch proposed to replace the pseudofermionic term in the
Hamiltonian (eqn. 1) by two terms:

χ†
(

MM†
)−1

χ 7→ χ†
1

(

MM† + µ2
)−1

χ1 + χ†
2

(

MM†

MM† + µ2

)−1

χ2 (13)

This is possible because the determinant

det
(

MM†
)

=

∫

DχDχ† e−χ†(MM†)
−1

χ (14)

=

∫

Dχ1Dχ
†
1Dχ2Dχ

†
2 e

−χ†
1(MM†+µ2)

−1
χ1−χ†

2

(

MM†

MM†+µ2

)−1

χ2 (15)

does not change under the given transformation. In the case of lattice QCD,
this procedure replaces the original ill-conditioned matrix with one that has its
low modes shifted away from zero by the factor µ2 without changing the high
modes significantly, while correcting for the change with an additional term in
the Hamiltonian. The relation is exact and if, as it turns out to be, the second
term is sub-dominant, i.e. leads to a smaller MD force than the first one, it can
be included in the MD integration using a larger time-step, hence speeding up
the overall simulation.

With, e.g. Wilson type fermions, adding the shift µ2 to the matrix MM† in
the determinant is easily achieved by adding a “twisted” mass µ to the fermion
operator M . In our case this approach does not work because our fermion
matrix lacks any “spinor” structure. However, we are free to add a non-zero
staggered mass ms, as shown in eq. (2). This leads to

χ†
(

MM†
)−1

χ 7→ χ†
1

(

MµM
†
µ

)−1
χ1 + χ†

0

(

MM†

MµM
†
µ

)−1

χ0 (16)
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with the notation

M = M(ms = 0) , Mµ = M(ms = µ) . (17)

The generalization to n masses µ0, . . . , µn−1 reads

χ†
(

MM†
)−1

χ 7→ (18)

χ†
n

(

Mµn−1
M†

µn−1

)−1

χn +

n−1
∑

i=1

χ†
i

(

Mµi−1
M†

µi−1

Mµi
M†

µi

)−1

χi + χ†
0

(

MM†

Mµ0
M†

µ0

)−1

χ0 .

The χn-term can now be treated exactly as the standard pseudofermionic χ-term
in the original algorithm by replacing M by Mµn−1

. In contrast the χi-terms
with i < n deserve additional treatment.
First of all the creation of χi now involves an inversion. After generating ρi
from e−ρ†

i
ρi one obtains χi from

χi = M−1
µi

Mµi−1
ρ =M†

µi

(

Mµi
M†

µi

)−1
Mµi−1

ρ for 0 < i < n , (19)

χ0 = M−1
µ0

Mρ =M†
µ0

(

Mµ0
M†

µ0

)−1
Mρ . (20)

In addition one has to consider the changes in eq. (11) where using
∂Mµi

∂φ = ∂M
∂φ

leads to

π̇T = Fφ +
n
∑

i=0

Fχi
(21)

Fφ = −δφTV −1 (22)

Fχn
= 2Re

(

η†n
∂M

∂φ
ξn

)

(23)

Fχi
= 2Re

(

η†i
∂M

∂φ
(ξi − χi)

)

for i < n (24)

with ηn and ξn obtained like in eq. (12) with Mµn−1
instead of M . The terms

in eq. 24 are defined as follows:

ηi =
(

Mµi−1
M†

µi−1

)−1

Mµi
χi (25)

ξi = M†
µi−1

ηi = M−1
µi−1

Mµi
χi (26)

Here Mµ−1
≡ M has been used for simplicity. Note that in the case of µi =

µi−1 this leads to ξi = χi and thus Fχi
= 0, leading to the reduced set of

equations with one less pseudofermion field. It can be assumed that Fχi
changes

continuously in µi and µi−1 (see below for more details). Therefore, this part
of the force will be weak for small |µi − µi−1|. On the other hand Mµi

is better
conditioned than M because the eigenvalues are bound from below by µi. This
leads to a splitting of the original force into n+1 terms of which some are easy
to calculate and the other ones can be chosen small.
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5.2. Different time scales

One can use this result in the same way as proposed in ref. [36]. The force
Fχ0

can be treated with less accuracy by putting it on a different time scale.
One can do this for each successive Fχ1

, Fχ2
, and so on. Let us for simplicity

first consider the case with only one staggered mass term. We use the Omelyan
integrator with the parameter ζ = 0.193 for the calculation of the trajectory.
Let T (t) denote the evolution of the system by one trajectory of length t, Tπ(∆t)
denote the evolution of φ over the time ∆t, and Tφ,χ0,χ1

(∆t) denote the evolution
of π corresponding to the forces Fφ,χ0,χ1

respectively. Then the näıve Omelyan
integrator reads

T (∆t) = Tφ+χ0+χ1
(ζ∆t) · Tπ (∆t/2)

· Tφ+χ0+χ1
((1− 2ζ)∆t) · Tπ (∆t/2) · Tφ+χ0+χ1

(ζ∆t) (27)

and T (t) = T (∆t)NMD where NMD = t
∆t is the number of time steps in the

molecular dynamics. As we want to weight Tχ0
less we can choose a number N0

that divides NMD and write

T (N0∆t) = Tχ0
(N0ζ∆t) · T0(∆t)N0/2

·Tχ0
(N0(1− 2ζ)∆t) · T0(∆t)N0/2 · Tχ0

(N0ζ∆t) (28)

T0(∆t) = Tφ+χ1
(ζ∆t) · Tπ (∆t/2)

·Tφ+χ1
((1− 2ζ)∆t) · Tπ (∆t/2) · Tφ+χ1

(ζ∆t) (29)

where in case of N0 odd we define

T0(∆t)1/2 = Tφ+χ1
(ζ∆t) · Tπ (∆t/2) · Tφ+χ1

((1− 2ζ)∆t/2) (30)

if the term stands before Tχ0
(N0(1− 2ζ)∆t) and

T0(∆t)1/2 = Tφ+χ1
((1− 2ζ)∆t/2) · Tπ (∆t/2) · Tφ+χ1

(ζ∆t) (31)

if it comes later. This manipulation maintains the basic properties of the inte-
grator: It remains symplectic and symmetric.
Now µ0 has to be chosen in such a way that the calculation of Fχ1

is much
cheaper than the calculation of Fχ0

but still the magnitude of Fχ0
is much less

than of Fχ1
. In this case N0 should be chosen as high as possible without sig-

nificantly reducing the accuracy.
For an arbitrary number of Hasenbusch masses and time scales this scheme can
be defined recursively in the same way as shown above. Tφ+χn

is the innermost
part. It is all together repeated NMD times per trajectory, this being Nn−1

times as often as Tχn−1
, Nn−2 times as often as Tχn−2

, and so on, up to N0

times as often as Tχ0
. Here obviously Nn−1 has to divide Nn−2, Nn−2 has to

divide Nn−3, . . . , N0 has to divide NMD. Of course it is possible to choose
Ni = Ni+1.
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6. Scaling behaviour of the combined method

Using the methods described in the previous sections, we have performed
simulations for different systems, one of which is shown here in greater detail:
a (15, 15)-chirality nanotube with 15 unit lengths and periodic boundary con-
ditions applied at the ends, divided into Nt = 256 time slices. Such boundary
conditions are defined using an orthogonal basis as depicted in fig. 3 of [27].
The coupling is U/κ = 3.5 and the inverse temperature βκ = 8.

6.1. Dependence of the solver time on ms

First of all it is important to understand the scaling of the solver time de-
pending on the staggered mass parameter ms. It is known (e.g. from ref. [37])
that for the flexible Generalized Minimal Residual (GMRES) solver the time
scales as

t = t0
λmax

λmin
(32)

where λmax is the largest and λmin the smallest eigenvalue of the matrix that
has to be inverted. As ms shifts the complete eigenspectrum of the matrix this
becomes

t (ms) = t0
λmax +ms

λmin +ms
. (33)

It turns out that even for our nested solvers this is a good approximation for
λmin < ms < λmax as can be seen in figure 3. The depicted fit corresponds to
λmax = 4.1(2) and λmin = 0.054(2). This functional form describes the data
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Figure 3: Runtime of one inversion of MmsM
†
ms

depending on the staggered mass ms.
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sufficiently well. It has the advantage that it directly gives the highest and the
lowest value of the spectrum of the original matrix MM†. These values can
directly be used to find a good set of Hasenbusch masses.

The largest eigenvalue λmax can be approximated with the non-interacting
limit for special cases (e.g. for graphene without chemical potential using the
Hubbard model the largest eigenvalue known from the non-interacting limit
shows very small deviations from the values with interaction). However it is not
known in general and the purpose of the auto–tuner is much more general. We
find that it works extremely well for graphene and carbon nanotubes without
having to provide any additional information. We expect it to be applicable
even when we add e.g. non–onsite interactions.

6.2. Dependence of Fχi
on µi and µi−1

Let us, for simplicity, assume that we simulate with two staggered masses
µ0 and µ1. As any force term Fχi

depends only on at most two masses, this
consideration is general enough to understand all force terms except for Fφ+χn

.
From eqs. (24) and (26) follows

Fχ1
∝
(

M−1
µ0

Mµ1
− 1
)

χ1 (34)

=
(

M−1
µ0

Mµ0+(µ1−µ0) − 1
)

χ1 (35)

≈
(

M−1
µ0

(Mµ0
+ (µ1 − µ0))− 1

)

χ1 (36)

= M−1
µ0

(µ1 − µ0)χ1 (37)

where, between eqs. (35) and (36), we assumed that the staggered mass term
can be placed on the time diagonal. This approximation is valid as it produces
the correct continuum limit. Thus for small differences µ1−µ0 the norm of the
force should be proportional to the absolute value of this difference:

|Fχ1
| ∝ |µ1 − µ0| (38)

Higher order influences coming from the matrix products have not been consid-
ered here. To take them into account one first has to pay attention to the fact
that the force should be symmetric under exchange of µ0 and µ1. Empirically
we have found that

|Fχ1
| = a

|µ1 − µ0|

((b+ µ0) (b+ µ1))
c (39)

is a symmetric form obeying the proportionality for small differences and fitting
the data sufficiently well (see fig. 4). It has been found that, independent of the
system size and geometry, one always has c ≈ 0.4. The parameter b is in the
same order of magnitude as λmin found in the previous section. Thus it can be
assumed that the factors b+µ0 and b+µ1 in the denominator correspond to the
minimal eigenvalues of the matrix at staggered masses µ0 and µ1 respectively.
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Figure 4: Force |Fχ1
| depending on the staggered mass ms = µ1 for several fixed values of

µ0. We find the fit parameters a = 0.413(13), b = 0.078(26) and c = 0.380(38).

6.3. Dependence of Fφ+χn
on µn−1

As the remaining large force term depends only on the last mass µn−1 we
can again consider for simplicity only one staggered mass term ms. Then one
can make the ansatz

|Fφ+χn
| ≈ F0 −

∣

∣Fχn−1

∣

∣ (40)

for the functional form with some constant F0. However the numerical values
of the coefficients have to be fitted independently of the results in the previous
section:

|Fφ+χn
| = F0 − ã

ms
(

b̃
(

b̃+ms

))c̃
(41)

Figure 5 shows that again forms > λmin the scaling of the force is described very
well by the given functional form. One also sees as expected that the values are
about an order of magnitude larger than the ones of |Fχi

|. For the parameters

one gets again b̃ (here b̃ = 0.0992(56)) in the same order of magnitude as λmin.
c̃ = 0.789(3) in this case.

7. Automatic tuning of the simulation parameters

In order to explore the whole parameter space, we need to run a large number
of independent simulations, at least one for each combination of coupling U ,
temporal lattice spacing δ, number of time steps Nt, and system size L. Such a
large set of independent simulations is hard to tune by hand, and therefore the
ability to auto-tune these parameters is essential.
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7.1. Tuning the HMC step size

Our auto–tuner executes a series of successive simulations, each time contin-
uing the simulation for a single MD trajectory, until some termination conditions
(which the user supplies) are met. The length of the trajectory is fixed and has
to be chosen by the user. It has been set to t = 1 here for reasons of sim-
plicity yielding ∆t = 1

NMD
. There is one main loop consisting of two phases.

In the first phase, the auto–tuner runs the simulator multiple times with the
same parameters until the mean acceptance rate has a small confidence interval,
making sure that the acceptance rate observation for the current NMD is suffi-
ciently accurate. In the second phase, the auto–tuner collects the observations
from all previous iterations and tries to create a new model for the relationship
between acceptance rate and NMD. After the model is created, the NMD for the
next iteration is selected based on the models prediction for yielding a preset
acceptance rate, e.g. pacc = 0.66. The loop stops when the parameters have
converged or the number of trajectories has reached a specified maximum limit.

First phase – minimizing the confidence interval. In the first phase, the auto–
tuner tries to get an accurate measurement of the acceptance rate for the current
NMD. In order to do this, a number of samples of trajectories is simulated.
Initially, a minimum number of trajectories is required. Next, the confidence
interval is updated after each additional trajectory and the phase stops after
this measurement gets smaller than a specified limit. The confidence interval
is based on the variance of a normally distributed population and then the
bounds are minimized if a portion of it lies outside the range between 0 and 1.
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It is important to note that here we make the assumption that the acceptance
rates for the samples of trajectories are normally distributed across the samples
and, therefore, it may be subject for further refinement. In our experience the
number of trajectories needed in this phase ranges from five to 30.

Second phase – creating a model. The design of the second phase was based
on visual observations from the shapes of the relationship of pacc versus NMD.
The resulting figures are reminiscent of the Sigmoid function, such as a logistic
function, not only in shape, but also in the range of the dependent variable,
which is between 0 and 1 in both cases. These are important pieces of infor-
mation that we have provided to the model in order to make it more accurate
and representative, even with a very small number of training data. For our
purposes it seemed that the most appropriate solution was to fit the Cumula-
tive Distribution Function (CDF) of the skew–normal distribution [38], which
is not always symmetric as a Sigmoid function. The skew–normal distribution
is a generalization of the normal distribution that allows non–zero skewness.
This impacts the shape of its CDF accordingly, giving our model the ability to
change the amount of steepness in the two ‘bend points’ of its ‘S’–like shape
(see fig. 6 for an example for modelling real data).

15



 0

 1

 0  100  200  300  400  500

p
a
c
c Observations

Artificial data
model: Sigmoid

 0

 1

 0  100  200  300  400  500

p
a
c
c Observations

Artificial data
model: CDFskew−normal

 0

 1

 0  100  200  300  400  500

p
a
c
c

NMD

Observations subset
Artificial data

model: CDFskew−normal

Figure 6: The model based on the CDF of the skew-normal distribution (middle) seems to fit
the real observations better than a sigmoid function (top). By providing two extra artificial
points, the model gives a reasonable shape even if a small subset of the measurements is
available (bottom).

The auto–tuner is written in python and uses the numpy and scipy li-
braries [39], as well as the python version of the ‘sn’ package [40] for calculating
the CDF of the skew–normal distribution for different parameters. The fitting
of the model is done by calling the scipy.optimize.least squares function of scipy,
that implements the Levenberg–Marquardt algorithm [41] for minimizing a loss
function, ‘soft l1’ in this case, which is a smooth approximation of the L1 norm
condition for robustness [42] (see alg. B.1 for the pseudocode in Appendix B).
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7.2. Tuning the Hasenbusch parameters

We now shift our aim to find a routine that optimizes the Hasenbusch pa-
rameters automatically. Using the auto–tuner of the previous section, we first
thermalize the system with or without some fixed Hasenbusch parameters. Af-
ter this we find appropriate staggered masses and time scales and, in the end,
optimize NMD for this set of parameters using the HMC auto–tuner once more.

Empirical data suggests a very broad minimum in parameter space (see fig. 7
for one staggered mass term). This means that the tuning does not have to be
very accurate to achieve a speed that is nearly optimal. This is why we do not
attempt to find the exact minimum of the CPU–time per trajectory. Instead we
provide a simple procedure that can be automatized to find a set of parameters
good enough for any practical purpose.
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Figure 7: Runtime of one trajectory depending on the staggered mass ms and the ratio be-
tween the time scales N0 normalized by the runtime without Hasenbusch acceleration and
weighted by the square root of the error ∆H made by the calculation. The weighting com-
pensates that all calculations have been performed with the same NMD = 540. Values greater
than 1 have been set to one 1 in this plot.

For the systems considered until now we did not see any significant improve-
ments in using more than two Hasenbusch terms. Because of this presently our
auto–tuner uses exactly two staggered masses, but it can be easily generalized
to more masses should the need arise. Since the number of mass terms is two,
the masses themselves have to be calculated. It seems reasonable to distribute
them equidistantly in the spectrum, where equidistantly has to be understood
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in a geometrical sense. For n masses this leads to

µi = λmin

(

λmax

λmin

)

i+1

n+1

(42)

with λmin,max gained from a fit of the solver time. The time scales then can be
found knowing that we use a second order integrator and thus the error of the
Hamiltonian ∆H made in one trajectory scales approximately with

∆H ∝
∑

i

|Fi|N
2
i (43)

where i counts all forces introduced above. Because of symmetry this term is
minimized near the point where all addends have the same value. Thus we get
a first approximation for the time scale ratios via

N ′
i =

√

Fφ+χn
(µn−1)

Fχi
(µi−1, µi)

. (44)

For two masses one finds that N ′
0 ≈ N ′

1 independently of the system as long as
c ≈ 0.4. As N1 has to divide N0 the only appropriate choice is N0 = N1. One
finds that in most cases the results are best if one chooses

N0 = N1 =
⌊

√

N ′
0 ·N

′
1

⌋

(45)

instead of rounding.
In summary the combined auto–tuner works as follows:

1. Thermalize the system with some fixed Hasenbusch parameters (one stag-
gered mass with ms = 0.5, N0 = 1 works quite good) and find a good
value for NMD.

2. Calculate solver time and forces for some different mass terms.
We calculate with N0 = N1 = 1 for the tuples
(m0, m1) ∈ {(0.05, 0.2), (0.1, 0.3), (0.2, 1.5), (0.4, 0.8), (1.2, 2)}.

3. Fit the results according to the eqs. 33, 39, and 41.
4. Calculate the two Hasenbusch masses according to eq. 42 and the time

scales according to 44 and 45.
5. Find the new optimum for NMD.

8. Results

The data presented here was produced at βκ = 8 and U/κ = 2.5 on single
nodes 2× Intel(R) Xeon(R) CPU E5-2680, 40MB Cache per node. The exact
numbers deviate for other choices of parameters7 and on other computers but
the qualitative behaviour is representative.

7Smaller values of U/κ lead to significantly faster calculations and reduce the advantage
of the presented algorithms compared to a standard CG solver. Yet even at U/κ = 0.5
our optimized algorithm reaches a speedup of factor three to four. For U/κ > 2.5 we find
only small deviations from the presented data. Explicitly U/κ = 5 has runtime and speedup
deviations of less than 25% from the U/κ = 2.5 case.
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The auto–tuner as explained above has been implemented and was stable
for all systems of carbon nanotubes as well as graphene tested up to this point.
All the results (with and without Hasenbusch acceleration) presented in this
section have been tuned in this way. Figures 8 and 9 visualize the speedup
depending on the system size, achieved for one trajectory by the introduction of
the fGMRES solver and additional Hasenbusch acceleration respectively. The
lengths to which the trajectories have been tuned can be found in table 1.
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Figure 8: Top: Time needed per trajectory by the different algorithms for graphene sheets
with (L × L) unit cells and Nt = 64. Bottom: Speedup over the standard HMC algorithm
(using double precision CG) for graphene sheets with (L × L) unit cells and Nt = 64. The
double precision CG solver exceeds L3 capacity at L = 51, whereas the spCG exceeds L3
capacity at L = 72. Our best algorithm is highlighted in bold.
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with (15×15) unit cells depending on Nt. Bottom: Speedup over the standard HMC algorithm
(using double precision CG) for graphene sheets with (15 × 15) unit cells depending on Nt.
Our best algorithm is highlighted in bold.

We analysed the runtime scaling with the system size. One finds a monomial
dependence of the time on L and Nt in some regions but not globally. The
dependence in the spatial size L (see fig. 8) is comparable for all algorithms but
the algorithm including Hasenbusch acceleration and the new fGMRES solver is
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CG-solver fGMRES-solver fGMRES-solver, Hasenbusch
L Nt NMD NMD NMD NMD/N0 µ0 µ1

12 64 34 35 18 9 0.51 1.62
15 32 12 12 8 4 0.42 0.73
15 64 37 35 18 9 0.39 1.18
15 96 72 73 26 13 0.33 1.37
15 128 126 124 44 22 0.51 2.36
15 192 269 263 70 35 0.50 2.27
15 256 464 474 98 49 0.41 2.09
21 64 38 39 22 11 0.54 1.84
30 64 41 43 20 10 0.41 1.12
39 64 48 49 30 10 0.33 0.74
48 64 45 47 30 10 0.33 0.70
66 64 54 61 24 12 0.41 0.94
90 64 64 68 26 13 0.39 0.99
102 64 66 63 30 15 0.41 1.10

Table 1: Lengths of the auto–tuned trajectories for the different algorithms. In the case of the
Hasenbusch-algorithm in addition the two staggered masses and their time scale are given.
The third column from the right gives the length of the trajectory on the most coarse time
scale.

much faster than the algorithm without Hasenbusch acceleration but with mixed
precision solves, which in turn is significantly faster than the algorithm without
Hasenbusch acceleration using only the double precision CG solver. In addition
one encounters a jump in the runtime between L = 48 and L = 66 for the
original algorithm and between L = 66 and L = 90 for the algorithms using the
spCG preconditioner. At these points the memory needed by the solver exceeds
the L3-cache of 40MB. After this threshold the scaling of the runtime becomes
stronger and the ratio between the single precision and the double precision
algorithms increases dramatically. It is expected that this advantage is going to
decrease as the system size grows even larger because L3-cache is not going to
play an important role any more neither for double nor single precision solver.
We see this behaviour already at L = 102, so we are not going to simulate yet
larger systems on single node in recent future.

The L3-threshold is not reached in figure 9, but here one can see that the
scaling of the runtime with Nt is much stronger without Hasenbusch acceler-
ation. Not only the runtime but also the tuning takes much longer without
Hasenbusch acceleration regardless of the much lower amount of trajectories
that have to be calculated. This is why we can present results for systems as
large as Nt = 512 with Hasenbusch acceleration but only Nt = 256 without.
Our experience up to this point leads us to conclude that the continuum limit
(Nt → ∞) is not only more expensive but also much more crucial for physical
results than the infinite volume limit (L → ∞), making this advantage of the
Hasenbusch algorithm rather important.
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8.1. Benchmarking to the 4-site problem

To ensure that our implementation of the auto–tuner and the Hasenbusch
mass shifts produce correct physics, we compute the allowed correlators for the
4-site model with nearest neighbours drawn from a cubic geometry (i.e. hexago-
nal lattice), and compare to the corresponding correlators obtained from direct
diagonalization of the Hubbard Hamiltonian. We simulate with a Hubbard ratio
U/κ = 4, βκ = 8, and Nt = 64, 96, 128, and 160. Figure 10 shows our cal-
culations, excluding the Nt = 160 results to reduce clutter. Here the expected
convergence of the correlators as we increase Nt is observed.

We can extract the interacting quasi-particle eigenenergies of this system by
fitting an exponential to these correlators, as the expected behaviour of these
correlators is C(τ) ∼ e−Eτ for large τ . In practice, we fitted exponentials within
a given time window. In particular, EΓ was fitted to an exponential in the time
window τκ ∈ [.2, 1], whereas EM was fitted in τκ ∈ [.6, 2]. In Table 2 we show
these extracted energies as well as the exact results from direct diagonalization.
As these results were only for benchmarking, we did not optimize our fit windows
when performing our fits. Still, we find excellent agreement with the exact
results for Nt = 128 and higher.

9. Conclusion

In this paper we investigated different attempts at accelerating lattice Monte
Carlo simulations of the Hubbard model on a hexagonal lattice. We imple-
mented higher order symplectic integrators in our MD integrations, and intro-
duced mixed-precision CG solvers as a ‘preconditioner’. In the former case we
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Table 2: Extracted energies from correlators of the 4-site model, as a function of Nt. EΓ was
extracted by fitting an exponential to the correlator in the time window τκ ∈ [.2, 1]. EM was
extracted from exponential fits in window τκ ∈ [.6, 2]. Uncertainties were obtained from a
bootstrap ensemble of fits. The last column gives the exact results for direct diagonalization
of the Hubbard Hamiltonian.

Nt 64 96 128 160 exact
EΓ/κ 3.555(16) 3.501(11) 3.445(12) 3.447(14) 3.429
EM/κ 1.647(23) 1.629(21) 1.542(18) 1.567(22) 1.565

found the Omelyan integrator to be competitive with the force gradient method,
while in the latter the mixed precision preconditioner gave a speedup of approx-
imately 1.9. In large systems, such as 66× 66 or larger, the introduction of the
fGMRES solver also provided a factor of ∼2.2 speedup.

Our greatest speedup came with the implementation of Hasenbusch accel-
eration via mass shifts. With just two Hasenbusch masses, and in combination
with the fGMRES solver, we were able to get a speedup of well over an order
of magnitude for lattices of size 90× 90 and higher.

The numerous parameters available in our simulations required the use of
an auto–tuner to find their optimal values. By establishing scaling relations
between the Hasenbusch masses and forces, as well as between the acceptance
rate and number of MD steps, we devised an efficient and stable procedure for
optimizing the parameter sets in our lattice MC simulations to a target 66%
acceptance rate.

To ensure that our implementation of the Hasenbusch acceleration and auto–
tuner performed correctly, we simulated the 4-site system and compared our
results to direct diagonalization, finding excellent agreement.

Our increased speedup now allows us to simulate hexagonal lattices of un-
precedented sizes. With only single-node resources, we were able to simulate up
to 102×102 lattices with Nt = 64. Results with even larger spatial sizes and Nt

are in preparation. If optimized over multi-nodes, we anticipate the ability to
simulate on systems an order of magnitude in size larger, thereby approaching
system sizes comparable to physical applications. We are currently developing
this capability.
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Appendix A. Implementation of the Flexible Generalized Minimal

Residual solver

The algorithm of the flexible GMRES from [31] with the spCG as precondi-
tioner in our implementation can be found in algorithm A.1 with some relative

input : TOL, b, A
output: x

1 solve A · x = b for x using spCG;
2 r = b−A · x;
3 ERR = |r|;
4 w = r;
5 while ERR > TOL · |b| do
6 for j = 0, . . . , m− 1 do

7 if ERR < TOL · |b| then
8 break;
9 end

10 vj = w/|w|;
11 if TOL · a · |b|/ERR < 1 then

12 solve A · zj = vj for zj using spCG with TOL = TOL · a · |b|/ERR;
13 end

14 else

15 zj = vj ;
16 end

17 w = A · zj ;
18 hij = w · vi;
19 w = w − sum (hij · vi, i = 0, . . . , j);
20 hj+1,j = |w|;
21 ERR = ERR · |w|;

22 end

23 y = argmin |(|r|, 0, . . . , 0)− h · y|;
24 x = x+ sum (yi · zi, i = 0, . . . , j);
25 r = b−A · x;
26 ERR = |r|;
27 w = r;

28 end

Algorithm A.1: Flexible GMRES

tolerance TOL, the complex vector b ∈ C
n and the matrix A ∈ C

n×n as input
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parameters and x, r, w ∈ C
n, v, z ∈ C

m×n, h ∈ R
m+1×m, y ∈ R

m. Here | · |
denotes the euclidean norm. The minimization in line 23 has been performed
by solving hTh y = |r| ·hT e1 for y using a Cholesky decomposition. m = 10 has
been chosen as the restart parameter and it showed to be good to set a = 5 in
the tolerance of the spCG preconditioner.

Appendix B. Tuning the HMC step size

In alg. B.1 we can see the pseudocode for the auto–tuner of the HMC step
size. It can be seen as a single routine that takes a parameter file for all pa-
rameters of the simulator, ignores the provided NMD = 1

∆t , runs a number of
simulations with automatically set NMD values and stops when the final NMD

value is expected to continue yielding a mean trajectory acceptance rate of 0.66.

Result: The NMD for which the acceptance rate is close to 0.66
1 NMD ← 500;
2 initialize or resume from a previous experiment;
3 /* Main loop */

4 while True do

5 /* 1st phase - minimizing the confidence interval */

6 trajectories ← 0;
7 while conf. interval > 0.25 or trajectories ≤ 5 do

8 pacc ← simulate(NMD);
9 trajectories ← trajectories + 1;

10 end

11 Append NMD to NMDlist;
12 Append mean pacc to pacclist;
13 /* 2nd phase - building a model */

14 training set ← (NMDlist, pacclist);
15 fit function ← f(x) = CDFskew–normal(β1x + β0, α) + ǫ ;
16 model build(training set, fit function);
17 NMD ← model predict NMD from pacc(0.66);
18 /* Stopping conditions - convergence heuristic */

19 if count total trajectories ≥ 500 or NMDlist.count(NMD) ≥ 3 or

times 0.66 was in conf. interval ≥ 3 then

20 break;
21 end

22 end

Algorithm B.1: High-level description of the HMC step size auto–tuner
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