000857060 001__ 857060
000857060 005__ 20240711114002.0
000857060 0247_ $$2doi$$a10.1016/j.nme.2018.10.013
000857060 0247_ $$2Handle$$a2128/19937
000857060 0247_ $$2WOS$$aWOS:000454165000023
000857060 0247_ $$2altmetric$$aaltmetric:51061132
000857060 037__ $$aFZJ-2018-06328
000857060 082__ $$a624
000857060 1001_ $$0P:(DE-Juel1)5247$$aWiesen, S.$$b0$$eCorresponding author$$ufzj
000857060 245__ $$aOn the role of finite grid extent in SOLPS-ITER edge plasma simulations for JET H-mode discharges with metallic wall
000857060 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000857060 3367_ $$2DRIVER$$aarticle
000857060 3367_ $$2DataCite$$aOutput Types/Journal article
000857060 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1541683789_28220
000857060 3367_ $$2BibTeX$$aARTICLE
000857060 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857060 3367_ $$00$$2EndNote$$aJournal Article
000857060 520__ $$aThe impact of the finite grid size in SOLPS-ITER edge plasma simulations is assessed for JET H-mode discharges with a metal wall. For a semi-horizontal divertor configuration it is shown that the separatrix density is at least 30% higher when a narrow scrape-off layer (SOL) grid width is chosen in SOLPS-ITER compared to the case for which the SOL grid width is maximised. The density increase is caused by kinetic neutrals being not confined inside the divertor region because of the reduced extent of the plasma grid. In this case, an enhanced level of reflections of energetic neutrals at the low-field side (LFS) metal divertor wall is observed. This leads to a shift of the ionisation source further upstream which must be accounted for as a numerical artefact. An overestimate in the cooling at the divertor entrance is observed in this case, identified by a reduced heat flux decay parameters λqdiv. Otherwise and further upstream the mid-plane heat decay length λq parameter is not affected by any change in divertor dissipation. This confirms the assumptions made for the ITER divertor design studies, i.e. that λq upstream is essentially set by the assumptions for the ratio radial to parallel heat conductivity. It is also shown that even for attached conditions the decay length relations λne > λTe > λq hold in the near-SOL upstream. Thus for interpretative edge plasma simulations one must take the (experimental) value of λne into account, rather than λq, as the former actually defines the required minimum upstream SOL grid extent.
000857060 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000857060 588__ $$aDataset connected to CrossRef
000857060 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b1
000857060 7001_ $$00000-0002-6743-1062$$aBonnin, X.$$b2
000857060 7001_ $$0P:(DE-Juel1)129994$$aDelabie, E.$$b3
000857060 7001_ $$0P:(DE-HGF)0$$aFrassinetti, L.$$b4
000857060 7001_ $$0P:(DE-Juel1)171218$$aGroth, M.$$b5$$ufzj
000857060 7001_ $$00000-0001-7662-5961$$aGuillemaut, C.$$b6
000857060 7001_ $$0P:(DE-HGF)0$$aHarrison, J.$$b7
000857060 7001_ $$0P:(DE-HGF)0$$aHarting, D.$$b8
000857060 7001_ $$00000-0002-8886-1256$$aHenderson, S.$$b9
000857060 7001_ $$0P:(DE-Juel1)130040$$aHuber, Alexander$$b10$$ufzj
000857060 7001_ $$0P:(DE-HGF)0$$aKruezi, U.$$b11
000857060 7001_ $$0P:(DE-HGF)0$$aPitts, R. A.$$b12
000857060 7001_ $$0P:(DE-HGF)0$$aWischmeier, M.$$b13
000857060 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2018.10.013$$gVol. 17, p. 174 - 181$$p174 - 181$$tNuclear materials and energy$$v17$$x2352-1791$$y2018
000857060 8564_ $$uhttps://juser.fz-juelich.de/record/857060/files/1-s2.0-S2352179118301248-main.pdf$$yOpenAccess
000857060 8564_ $$uhttps://juser.fz-juelich.de/record/857060/files/1-s2.0-S2352179118301248-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857060 909CO $$ooai:juser.fz-juelich.de:857060$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000857060 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5247$$aForschungszentrum Jülich$$b0$$kFZJ
000857060 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b1$$kFZJ
000857060 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171218$$aForschungszentrum Jülich$$b5$$kFZJ
000857060 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b10$$kFZJ
000857060 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000857060 9141_ $$y2018
000857060 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857060 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000857060 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000857060 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000857060 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000857060 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857060 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857060 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000857060 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857060 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000857060 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x1
000857060 9801_ $$aFullTexts
000857060 980__ $$ajournal
000857060 980__ $$aVDB
000857060 980__ $$aUNRESTRICTED
000857060 980__ $$aI:(DE-Juel1)IEK-4-20101013
000857060 980__ $$aI:(DE-Juel1)ICS-4-20110106
000857060 981__ $$aI:(DE-Juel1)IFN-1-20101013
000857060 981__ $$aI:(DE-Juel1)IBI-1-20200312