001     857060
005     20240711114002.0
024 7 _ |a 10.1016/j.nme.2018.10.013
|2 doi
024 7 _ |a 2128/19937
|2 Handle
024 7 _ |a WOS:000454165000023
|2 WOS
024 7 _ |a altmetric:51061132
|2 altmetric
037 _ _ |a FZJ-2018-06328
082 _ _ |a 624
100 1 _ |a Wiesen, S.
|0 P:(DE-Juel1)5247
|b 0
|e Corresponding author
|u fzj
245 _ _ |a On the role of finite grid extent in SOLPS-ITER edge plasma simulations for JET H-mode discharges with metallic wall
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1541683789_28220
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The impact of the finite grid size in SOLPS-ITER edge plasma simulations is assessed for JET H-mode discharges with a metal wall. For a semi-horizontal divertor configuration it is shown that the separatrix density is at least 30% higher when a narrow scrape-off layer (SOL) grid width is chosen in SOLPS-ITER compared to the case for which the SOL grid width is maximised. The density increase is caused by kinetic neutrals being not confined inside the divertor region because of the reduced extent of the plasma grid. In this case, an enhanced level of reflections of energetic neutrals at the low-field side (LFS) metal divertor wall is observed. This leads to a shift of the ionisation source further upstream which must be accounted for as a numerical artefact. An overestimate in the cooling at the divertor entrance is observed in this case, identified by a reduced heat flux decay parameters λqdiv. Otherwise and further upstream the mid-plane heat decay length λq parameter is not affected by any change in divertor dissipation. This confirms the assumptions made for the ITER divertor design studies, i.e. that λq upstream is essentially set by the assumptions for the ratio radial to parallel heat conductivity. It is also shown that even for attached conditions the decay length relations λne > λTe > λq hold in the near-SOL upstream. Thus for interpretative edge plasma simulations one must take the (experimental) value of λne into account, rather than λq, as the former actually defines the required minimum upstream SOL grid extent.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 1
700 1 _ |a Bonnin, X.
|0 0000-0002-6743-1062
|b 2
700 1 _ |a Delabie, E.
|0 P:(DE-Juel1)129994
|b 3
700 1 _ |a Frassinetti, L.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Groth, M.
|0 P:(DE-Juel1)171218
|b 5
|u fzj
700 1 _ |a Guillemaut, C.
|0 0000-0001-7662-5961
|b 6
700 1 _ |a Harrison, J.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Harting, D.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Henderson, S.
|0 0000-0002-8886-1256
|b 9
700 1 _ |a Huber, Alexander
|0 P:(DE-Juel1)130040
|b 10
|u fzj
700 1 _ |a Kruezi, U.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Pitts, R. A.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Wischmeier, M.
|0 P:(DE-HGF)0
|b 13
773 _ _ |a 10.1016/j.nme.2018.10.013
|g Vol. 17, p. 174 - 181
|0 PERI:(DE-600)2808888-8
|p 174 - 181
|t Nuclear materials and energy
|v 17
|y 2018
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/857060/files/1-s2.0-S2352179118301248-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/857060/files/1-s2.0-S2352179118301248-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:857060
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)5247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171218
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130040
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-4-20110106
|k ICS-4
|l Zelluläre Biophysik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IBI-1-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21