000857065 001__ 857065
000857065 005__ 20230426083202.0
000857065 0247_ $$2doi$$a10.1103/PhysRevB.98.134404
000857065 0247_ $$2ISSN$$a0163-1829
000857065 0247_ $$2ISSN$$a0556-2805
000857065 0247_ $$2ISSN$$a1050-2947
000857065 0247_ $$2ISSN$$a1094-1622
000857065 0247_ $$2ISSN$$a1095-3795
000857065 0247_ $$2ISSN$$a1098-0121
000857065 0247_ $$2ISSN$$a1538-4489
000857065 0247_ $$2ISSN$$a1550-235X
000857065 0247_ $$2ISSN$$a2469-9950
000857065 0247_ $$2ISSN$$a2469-9969
000857065 0247_ $$2Handle$$a2128/20151
000857065 0247_ $$2WOS$$aWOS:000446295800001
000857065 0247_ $$2altmetric$$aaltmetric:32494797
000857065 037__ $$aFZJ-2018-06333
000857065 082__ $$a530
000857065 1001_ $$0P:(DE-HGF)0$$aChaudhary, Gaurav$$b0$$eCorresponding author
000857065 245__ $$aAnatomy of magnetic anisotropy induced by Rashba spin-orbit interactions
000857065 260__ $$aWoodbury, NY$$bInst.$$c2018
000857065 3367_ $$2DRIVER$$aarticle
000857065 3367_ $$2DataCite$$aOutput Types/Journal article
000857065 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542879037_6134
000857065 3367_ $$2BibTeX$$aARTICLE
000857065 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857065 3367_ $$00$$2EndNote$$aJournal Article
000857065 520__ $$aMagnetic anisotropy controls the orientational stability and switching properties of magnetic states, and therefore plays a central role in spintronics. First-principles density functional theory calculations are able, in most cases, to provide a satisfactory description of bulk and interface contributions to the magnetic anisotropy of particular film/substrate combinations. In this paper we focus on achieving a simplified understanding of some trends in interfacial magnetic anisotropy based on a simple tight-binding model for quasiparticle states in a heavy-metal/ferromagnetic-metal bilayer film. We explain how to calculate the magnetic anisotropy energy of this model from the quasiparticle spin susceptibility, compare with more conventional approaches using either a perturbative treatment of spin-orbit interactions or a direct calculation of the dependence of the energy on the orientation of the magnetization, and show that the magnetic anisotropy can be interpreted as a competition between a Fermi sea term favoring perpendicular anisotropy and a Fermi surface term favoring in-plane anisotropy. Based on this finding, we conclude that perpendicular magnetic anisotropy should be expected in an itinerant electron thin film when the spin magnetization density is larger than the product of the band exchange splitting and the Fermi level density of states of the magnetic state.
000857065 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000857065 542__ $$2Crossref$$i2018-10-02$$uhttps://link.aps.org/licenses/aps-default-license
000857065 588__ $$aDataset connected to CrossRef
000857065 7001_ $$0P:(DE-Juel1)145395$$ados Santos Dias, Manuel$$b1$$ufzj
000857065 7001_ $$0P:(DE-HGF)0$$aMacDonald, Allan H.$$b2
000857065 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b3$$eCorresponding author$$ufzj
000857065 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.98.134404$$bAmerican Physical Society (APS)$$d2018-10-02$$n13$$p134404$$tPhysical Review B$$v98$$x2469-9950$$y2018
000857065 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.98.134404$$gVol. 98, no. 13, p. 134404$$n13$$p134404$$tPhysical review / B$$v98$$x2469-9950$$y2018
000857065 8564_ $$uhttps://juser.fz-juelich.de/record/857065/files/Chaudhary2018.pdf$$yOpenAccess
000857065 8564_ $$uhttps://juser.fz-juelich.de/record/857065/files/Chaudhary2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857065 909CO $$ooai:juser.fz-juelich.de:857065$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000857065 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aThe University of Texas at Austin$$b0
000857065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145395$$aForschungszentrum Jülich$$b1$$kFZJ
000857065 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a The University of Texas at Austin$$b2
000857065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b3$$kFZJ
000857065 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000857065 9141_ $$y2018
000857065 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857065 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857065 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000857065 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000857065 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857065 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857065 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857065 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857065 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857065 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857065 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857065 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857065 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857065 920__ $$lyes
000857065 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000857065 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000857065 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000857065 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000857065 980__ $$ajournal
000857065 980__ $$aVDB
000857065 980__ $$aUNRESTRICTED
000857065 980__ $$aI:(DE-Juel1)IAS-1-20090406
000857065 980__ $$aI:(DE-Juel1)PGI-1-20110106
000857065 980__ $$aI:(DE-82)080009_20140620
000857065 980__ $$aI:(DE-82)080012_20140620
000857065 9801_ $$aFullTexts
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.76.323
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.89.025006
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/59/11/002
000857065 999C5 $$1E. I. Dzyaloshinksii$$2Crossref$$oE. I. Dzyaloshinksii 1957$$y1957
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.120.91
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat4360
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature07318
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2008.406
000857065 999C5 $$1R. Skomski$$2Crossref$$9-- missing cx lookup --$$a10.1093/acprof:oso/9780198570752.001.0001$$y2008
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01339586
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.52.1178
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.58.909
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.39.865
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/10/14/012
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.12054
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.9989
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.177207
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.9557
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.32.2115
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.61
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ssc.2014.06.003
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.82.640
000857065 999C5 $$1Y. A Bychkov$$2Crossref$$oY. A Bychkov 1984$$y1984
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep04105
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.184402
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.126803
000857065 999C5 $$1H. Hellmann$$2Crossref$$oH. Hellmann Einführung in die Quantenchemie 1937$$tEinführung in die Quantenchemie$$y1937
000857065 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.56.340