001     857065
005     20230426083202.0
024 7 _ |a 10.1103/PhysRevB.98.134404
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/20151
|2 Handle
024 7 _ |a WOS:000446295800001
|2 WOS
024 7 _ |a altmetric:32494797
|2 altmetric
037 _ _ |a FZJ-2018-06333
082 _ _ |a 530
100 1 _ |a Chaudhary, Gaurav
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Anatomy of magnetic anisotropy induced by Rashba spin-orbit interactions
260 _ _ |a Woodbury, NY
|c 2018
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542879037_6134
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic anisotropy controls the orientational stability and switching properties of magnetic states, and therefore plays a central role in spintronics. First-principles density functional theory calculations are able, in most cases, to provide a satisfactory description of bulk and interface contributions to the magnetic anisotropy of particular film/substrate combinations. In this paper we focus on achieving a simplified understanding of some trends in interfacial magnetic anisotropy based on a simple tight-binding model for quasiparticle states in a heavy-metal/ferromagnetic-metal bilayer film. We explain how to calculate the magnetic anisotropy energy of this model from the quasiparticle spin susceptibility, compare with more conventional approaches using either a perturbative treatment of spin-orbit interactions or a direct calculation of the dependence of the energy on the orientation of the magnetization, and show that the magnetic anisotropy can be interpreted as a competition between a Fermi sea term favoring perpendicular anisotropy and a Fermi surface term favoring in-plane anisotropy. Based on this finding, we conclude that perpendicular magnetic anisotropy should be expected in an itinerant electron thin film when the spin magnetization density is larger than the product of the band exchange splitting and the Fermi level density of states of the magnetic state.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
542 _ _ |i 2018-10-02
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a dos Santos Dias, Manuel
|0 P:(DE-Juel1)145395
|b 1
|u fzj
700 1 _ |a MacDonald, Allan H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lounis, Samir
|0 P:(DE-Juel1)130805
|b 3
|e Corresponding author
|u fzj
773 1 8 |a 10.1103/physrevb.98.134404
|b American Physical Society (APS)
|d 2018-10-02
|n 13
|p 134404
|3 journal-article
|2 Crossref
|t Physical Review B
|v 98
|y 2018
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.98.134404
|g Vol. 98, no. 13, p. 134404
|0 PERI:(DE-600)2844160-6
|n 13
|p 134404
|t Physical review / B
|v 98
|y 2018
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/857065/files/Chaudhary2018.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/857065/files/Chaudhary2018.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:857065
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a The University of Texas at Austin
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145395
910 1 _ |a The University of Texas at Austin
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130805
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts
999 C 5 |a 10.1103/RevModPhys.76.323
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.89.025006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/59/11/002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 E. I. Dzyaloshinksii
|y 1957
|2 Crossref
|o E. I. Dzyaloshinksii 1957
999 C 5 |a 10.1103/PhysRev.120.91
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat4360
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature07318
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2008.406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/acprof:oso/9780198570752.001.0001
|1 R. Skomski
|2 Crossref
|9 -- missing cx lookup --
|y 2008
999 C 5 |a 10.1007/BF01339586
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.52.1178
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.58.909
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.39.865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/10/14/012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.44.12054
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.50.9989
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.99.177207
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.57.9557
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.32.2115
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.54.61
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ssc.2014.06.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.82.640
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Y. A Bychkov
|y 1984
|2 Crossref
|o Y. A Bychkov 1984
999 C 5 |a 10.1038/srep04105
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.94.184402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.104.126803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 H. Hellmann
|y 1937
|2 Crossref
|t Einführung in die Quantenchemie
|o H. Hellmann Einführung in die Quantenchemie 1937
999 C 5 |a 10.1103/PhysRev.56.340
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21