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Anatomy of magnetic anisotropy induced by Rashba spin-orbit interactions
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Magnetic anisotropy controls the orientational stability and switching properties of magnetic states, and
therefore plays a central role in spintronics. First-principles density functional theory calculations are able, in
most cases, to provide a satisfactory description of bulk and interface contributions to the magnetic anisotropy
of particular film/substrate combinations. In this paper we focus on achieving a simplified understanding of
some trends in interfacial magnetic anisotropy based on a simple tight-binding model for quasiparticle states in
a heavy-metal/ferromagnetic-metal bilayer film. We explain how to calculate the magnetic anisotropy energy of
this model from the quasiparticle spin susceptibility, compare with more conventional approaches using either
a perturbative treatment of spin-orbit interactions or a direct calculation of the dependence of the energy on the
orientation of the magnetization, and show that the magnetic anisotropy can be interpreted as a competition
between a Fermi sea term favoring perpendicular anisotropy and a Fermi surface term favoring in-plane
anisotropy. Based on this finding, we conclude that perpendicular magnetic anisotropy should be expected in an
itinerant electron thin film when the spin magnetization density is larger than the product of the band exchange
splitting and the Fermi level density of states of the magnetic state.
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I. INTRODUCTION

Spintronics [1] aims to utilize the electron spin as the active
degree of freedom for information storage and processing.
Bilayers containing an interface [2] between a thin film of
a heavy metal and a magnetic one are important hybrid
materials in spintronics, as they combine magnetic order,
strong spin-orbit interactions, and broken inversion symmetry.
Strong spin-orbit coupling (SOC) derived from the heavy-
metal layer and inversion symmetry broken by the interface,
combined with exchange interactions of the magnetic layer,
can lead to perpendicular magnetic anisotropy [3] (PMA),
Dzyaloshinskii-Moriya interactions [4,5], spin-orbit torques,
Rashba-Edelstein effects, and more [6]. Spin-orbit interac-
tions near the interface provide a handle to alter these prop-
erties by tuning chemical composition, interface structure, or
gate voltages, as demonstrated most extensively for magnetic
anisotropy [7,8].

Magnetic anisotropy energy (MAE) refers to the depen-
dence of the total energy of a magnetic system on the real-
space orientation of its magnetization. The MAE is respon-
sible for the orientational stability of magnetic domains, and
hence lies at the heart of both magnetic hard disk drives and
magnetic random access memories. There are two main con-
tributions to the MAE [9]: the magnetocrystalline anisotropy
which arises from electronic spin-orbit interactions, and shape
anisotropy which arises from the magnetostatic dipolar in-
teraction. For a thin ferromagnetic film, the magnetostatic
energy is minimized when the magnetization is in the plane
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of the film, leading to in-plane magnetic anisotropy (IMA).
To stabilize PMA, the magnetocrystalline anisotropy energy
must overcome the shape anisotropy. From the technological
point of view, PMA is very important, since it enables an
increased bit storage density, through a reduced size of the
magnetic domains that store each bit of information. For this
reason, considerable experimental and theoretical effort has
been devoted to the design, growth, and understanding of
magnetic materials displaying PMA.

The fact that spin-orbit coupling contributes to the MAE
was pointed out by Bloch [10] and van Vleck [11], and
Brooks [12] first outlined its description in terms of the
underlying electronic structure. More recently, Bruno [13]
pointed to an appealing perturbative connection between
MAE and the anisotropy of the orbital magnetic moment,
which was later generalized in Ref. [14]. Density func-
tional theory (DFT) calculations for transition-metal sys-
tems [15,16] showed that Bruno’s connection holds for 3d
transition metals and their compounds, and also for thin
films, although some counterexamples have been uncovered
recently, both experimentally and theoretically [17]. Total
energy differences from self-consistent DFT calculations pro-
vide a reliable but cumbersome way of computing the MAE
for a specific target system [18], and can be simplified
by use of the magnetic force theorem [15,19]. A different
approach is to evaluate directly the derivative of the en-
ergy with respect to the ferromagnetic orientation, the so-
called torque method [20]. Recently, it has been proposed
by Antropov et al. [21] that a numerically stable way of
computing the MAE is to evaluate half of the anisotropy in the
SOC energy term in the Hamiltonian, adapting to electronic
structure calculations an idea already advanced by van der
Laan [22].
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The one-band Rashba model [23] is often used to illustrate
the effects of SOC on band structure and materials properties
related to surfaces and interfaces. It can describe the interplay
between SOC and the coupling of the electron spin to a
magnetic condensate, in particular to interpret the properties
of magnetic/heavy-metal bilayers [6]. Due to the weak SOC
of ferromagnetic transition metals, the intrinsic contribution
from the ferromagnetic layer to the MAE is much weaker than
the one arising from the interface with the heavy metal, as long
as the ferromagnetic layer is not too thick. It then makes sense
to focus only on the interfacial contribution to the MAE. In
this context, the appropriate Rashba model should describe the
bands that arise from a hybridization of the electronic orbitals
from both the ferromagnetic and the heavy-metal atoms at
the interface, and so are influenced by SOC and spin-split
due to ferromagnetism. Reference [24] presented a simple
theoretical description of the MAE using the free-electron
Rashba model, and pointed out that the finite bandwidth
must be taken into account, as confirmed in Ref. [25]. A
gate voltage was experimentally demonstrated to control the
Rashba coupling strength [26], which might provide a route
to the electrical control of the MAE [7].

In this work we study the magnetocrystalline anisotropy
of a ferromagnet/heavy-metal bilayer, driven by interfacial
Rashba SOC, highlighting different physical regimes and
considering different ways of interpreting the results. We
develop the theory for the finite-bandwidth case, employing
the tight-binding approximation. The behavior of the MAE is
analyzed with respect to the three competing energy scales:
the nonrelativistic kinetic energy t ′, the Rashba SOC strength
t ′′, and the strength of the exchange coupling J to the ferro-
magnetic order parameter. We contrast the global definition of
the MAE (energy difference between different ferromagnetic
directions of the system) with its local definition (curvature of
the energy for a given ferromagnetic direction). This curvature
of the energy is evaluated from the electronic spin suscepti-
bility, providing a new way to compute the MAE. We show
that the Fermi surface contribution favors IMA, while the
Fermi sea contribution favors PMA. This indicates that both
the overall band filling and the relative contributions from
individual bands at a fixed total filling play an important role
in stabilizing PMA. The analytic treatment of the half-filled
case provides a figure of merit for PMA in this model, and
numerical calculations recover the IMA → PMA → IMA
behavior of the MAE when the filling is increased from zero
to two electrons [25]. The recent proposal that the MAE is
half of the anisotropy in the SOC energy is also explored.
We consider three qualitatively different parameter regimes
for detailed study: (i) strong exchange (J � t ′ � t ′′), (ii)
intermediate exchange (J ∼ t ′ � t ′′), and (iii) weak exchange
(t ′ � J ∼ t ′′).

The paper is organized as follows. In Sec. II we present the
tight-binding model and the theoretical and numerical meth-
ods, and illustrate the main features of the electronic structure.
Different ways of computing the MAE and an overview of the
results are discussed in Sec. III, connecting to previous work.
The half-filled case is analyzed using perturbation theory in
Sec. IV, where we prove that it always has PMA. This analytic
calculation suggests a useful figure of merit for MAE. Then
the MAE is studied in detail in Sec. V, focusing on the three

physically distinct cases mentioned above. Our conclusions
are gathered in Sec. VI, and some derivations and analytical
calculations are presented in three appendices.

II. MODEL AND METHODS

To illustrate the properties of itinerant electrons with
broken inversion symmetry and SOC, we consider a two-
dimensional square lattice with one orbital per site, nearest-
neighbor hopping, and Rashba-like spin-momentum locking:

He = −1

2

∑
〈i,j 〉

∑
s,s ′

c
†
is

[
t ′σ 0

ss ′ − it ′′(ẑ × R̂ij ) · σ ss ′
]
cjs ′ . (1)

Here the sum is over near-neighbor links, c
†
is and cis are

the creation and annihilation operators for an electron with
spin s at a lattice site Ri , σ 0 is the unit 2 × 2 spin matrix,
and σ = (σx, σ y, σ z) is the vector of Pauli matrices. The
vector connecting site i to site j is Rij = Rj − Ri , and
the cross product favors spin orientations perpendicular to
the bond direction, R̂ij = Rij /|Rij |, and the normal to the
lattice plane, ẑ. The hopping strength is given by t , and the
angle φR characterizes the relative strength of conventional
spin-independent hopping t ′ = 2t cos φR and chiral Rashba
hopping t ′′ = 2t sin φR.

We impose Born–von Karman periodic boundary con-
ditions and introduce the lattice Fourier transforms of the
operators,

cis = 1√
N

∑
k

eik·Ri cs (k), (2)

1

N

∑
k

eik·(Ri−Rj ) = δij ,
1

N

∑
i

ei(k′−k)·Ri = δk′k, (3)

where N is the number of lattice sites.
This leads to the k-space representation of the Hamiltonian

matrix elements,

He(k) = H0(k) + HR(k), (4a)

H0(k) = −t ′(cos kx + cos ky )σ 0, (4b)

HR(k) = −t ′′(sin kxσ
y − sin kyσ

x ), (4c)

where we have used the lattice constant as the unit of length.
For small k-vectors (setting h̄ = 1 and ignoring the leading
constant term),

He(k) ≈ t ′
(
k2
x + k2

y

)
2

σ 0 − t ′′(kxσ
y − kyσ

x )

= k2
x + k2

y

2m∗ σ 0 + α(k × ẑ) · σ , (5)

which is the form of the Hamiltonian for a Rashba electron
gas, with m∗ the effective mass and α the Rashba parameter.

To model a ferromagnetic system, we add ferromagnetic
exchange between the quasiparticles and the magnetic con-
densate:

H(k) = He(k) − B · σ (6a)

= H0(k) + HR(k) + HB (6b)

= E0(k)σ 0 − b(k) · σ , (6c)
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where

E0(k) = −t ′(cos kx + cos ky ), (7)

and

b(k) = bR(k) + B, (8a)

bR(k) = t ′′(sin ky x̂ − sin kx ŷ), (8b)

B = J (sin θ (cos ϕx̂ + sin ϕŷ) + cos θ ẑ). (8c)

Here bR(k) is the Rashba spin-orbit field, and the coupling
to the ferromagnetic background is given by B, where the
spherical angles θ and ϕ specify the magnetization orientation
and J is the strength of the coupling.

We can immediately diagonalize the Hamiltonian,

H(k) = E+(k)P+(k) + E−(k)P−(k), (9)

where the band energies

E±(k) = E0(k) ∓ |b(k)|, (10)

and the eigenvector projectors

P±(k) = 1

2
[σ 0 ± b̂(k) · σ ], b̂(k) = b(k)

|b(k)| . (11)

The plus sign corresponds to the lower energy majority band
and the minus sign to the higher energy minority band.
Band dispersions are plotted in Fig. 1 for some representative
cases.

The electronic density of states (DOS) is given by

ρ(E) =
∑
n=±

∫
dk

(2π )2
δ(E − En(k)), (12)

which leads to the number of electrons per lattice site,

Ne =
∫

dk
(2π )2

[f+(k) + f−(k)] =
∫ EF

−∞
dE ρ(E). (13)

The integral in Eq. (13) is over the first Brillouin zone, and
fn(k) = �(EF − En(k)) is the occupation of the correspond-
ing eigenstate En(k). The coupling to the ferromagnetic back-
ground induces a net spin moment on the itinerant electrons,
given by

M =
∫

dk
(2π )2

[f+(k) − f−(k)]b̂(k) =
∫ EF

−∞
dE m(E),

(14)
which defines the spin-polarized DOS (the net vector spin
polarization at a given energy). The energetics of the itinerant
electrons can be obtained from the internal energy U . At zero
temperature,

U =
∑
n=±

∫
dk

(2π )2
fn(k)En(k) =

∫ EF

−∞
dE ρ(E)E. (15)

Some properties of the internal energy are summarized in
Appendix B. Further insight can be gained by separating
contributions to the internal energy into bare band, Rashba,

and exchange contributions [cf. Eq. (6)]:

U =
∑
n=±

∫
dk

(2π )2
fn(k)TrPn(k)[H0(k) + HR(k) + HB]

= U0 + UR + UB. (16)

For some calculations it is more convenient to employ the
Green’s function

G(k, E) = [E − H(k)]−1 =
∑
n=±

Pn(k)

E − En(k)
, (17)

which is related to the internal energy and its derivatives in
Appendix C. For instance, the DOS is given by

ρ(E) = − 1

π
ImTr

∫
dk

(2π )2
G(k, E), (18)

and the spin-polarized DOS by

m(E) = − 1

π
ImTr

∫
dk

(2π )2
σG(k, E), (19)

where the traces are over the spin components.
All ground state properties can be expressed in terms

of the Green’s function, including correlation functions. In
particular, the static uniform spin susceptibility for a fixed
number of electrons is given by [using Eqs. (6), (14), and (19),
and the property (C3)]

χαβ = ∂Mα

∂Bβ

∣∣∣∣
Ne

= 1

π
ImTr

∫ EF

−∞
dE

∫
dk

(2π )2
σαG(k, E)σβG(k, E)

− mα (EF)mβ (EF)

ρ(EF)
. (20)

The last term comes from ensuring that ∂Ne/∂Bβ = 0, as
in the derivation of Eq. (C9). Its role is illustrated in Ap-
pendix D 1 for a ferromagnetic system without SOC. The
susceptibility can also be expressed directly in terms of the
eigenvalues and eigenvectors of the Hamiltonian, as summa-
rized in Appendix D.

Some comments on the numerical evaluation of the various
quantities we consider are in order. Every quantity is to be
calculated at constant filling Ne, which requires an accurate
determination of the Fermi energy EF. Keeping all other
parameters fixed (magnetization orientation, etc.), EF is a
monotonic function of Ne, so it can be efficiently determined
using the bisection algorithm with high accuracy. EF is it-
eratively refined until the computed Ne is within a ±10−8

range of the desired input value. It follows from particle-
hole symmetry that EF = 0 for Ne = 1. The integrals over
the Brillouin zone are done with a k-mesh of 1000 × 1000
equidistant points. To compute the DOS, the δ functions in
Eq. (12) are approximated by Lorentzian functions with a
broadening η = 10−3t . All other quantities are computed by
direct numerical summation of the contributions from each
k point, using either the analytical expressions or contour
integration of the Green’s function expressions.
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FIG. 1. Band dispersions given by Eq. (10) and the respective densities of states for representative cases: (a) No Rashba splitting and finite
exchange coupling to the background magnetization leads to a constant vertical splitting of the bands. Parameters: φR = 0 (t ′ = 2t, t ′′ = 0),
J = t . (b) Finite Rashba splitting and no background magnetization leads to a k-dependent horizontal splitting of the bands. Parameters:
φR = π/6 (t ′ = √

3t, t ′′ = t), J = 0. (c), (d) When the Rashba splitting and the background magnetization are both finite, the dispersion
depends on the orientation of the magnetization with respect to the lattice. Parameters: φR = π/6 (t ′ = √

3t, t ′′ = t), J = t . (c) When the
magnetization is normal to the plane (B ‖ ẑ) the system has fourfold rotational symmetry. (d) When the magnetization is along a nearest-
neighbor direction (B ‖ x̂) the bands have a unidirectional shift in the perpendicular direction (ŷ). For these parameters we find two degeneracy
points, at k = (0, −π/2) and k = (±π,−π/2), one being visible in the figure. These degeneracies do not lead to any features in the DOS.

III. COMPUTING THE MAGNETIC ANISOTROPY
ENERGY

In our model, the MAE is due to the variation of the
internal energy of the itinerant electrons as the ferromagnetic
background orientation rotates. Following the arguments of
Bloch and van Vleck [10,11], it is clear that the MAE vanishes
if there is no spin-orbit coupling, i.e., in our model if there
is no Rashba coupling (φR = t ′′ = 0). Phenomenologically,
the MAE is expanded in angular functions that respect the
symmetry of the system [9]. For the square lattice (effectively
tetragonal symmetry),

UMAE(θ, ϕ) ≈ K2 sin2 θ + (K4 + K ′
4 cos 4ϕ) sin4 θ, (21)

with θ and ϕ the spherical angles describing the orientation of
the ferromagnetic background. It follows from perturbation
theory arguments that K2n ∝ t ′′(t ′′/J )2n−1 with n � 1, as
discussed for the present model in Sec. IV. Higher-order
anisotropy constants should decline rapidly in magnitude, as
they are proportional to higher powers of the ratio between the
spin-orbit interaction strength and the spin splitting, which is
often small.

The anisotropy constants can then be determined by fitting
the angular dependence of the internal energy. Keeping all

other parameters fixed, the internal energy given by Eq. (15)
is an explicit function of the angles describing the ferromag-
netic orientation, U (θ, ϕ). Assuming that the model form
in Eq. (21) holds, evaluating the internal energy for three
orientations is sufficient to fix the anisotropy. The system will
have PMA provided that both of the following inequalities are
satisfied:

U ( π
2 , 0) − U (0, 0) = K2 + K4 + K ′

4

U ( π
2 , π

4 ) − U (0, 0) = K2 + K4 − K ′
4

}
> 0. (22)

Often K ′
4 can be neglected, and only two orientations of the

magnetization need be considered. In Fig. 2 we show how
the anisotropy energy goes from IMA → PMA → IMA as
a function of the band filling, as already found in Ref. [25].
In Sec. V we test the claim that the MAE is equal to half
the magnetization direction dependence of the SOC energy
[21,22].

We can also calculate the MAE in two alternative ways.
For a chosen orientation of the ferromagnetic background, we
may compute either the magnetic torque (the first derivative of
the internal energy with respect to the ferromagnetic moment
orientation) or the curvature of the internal energy (the second
derivative). The Hellmann-Feynman theorem [27,28] yields
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FIG. 2. Magnetic anisotropy energy �U = U ( π

2 , 0) − U (0, 0)
vs number of electrons per site. (a) For increasing Rashba strength
and fixed coupling strength to the ferromagnetic background. Param-
eters: J = t . (b) For fixed Rashba strength and increasing coupling
strength to the ferromagnetic background. Parameters: φR = π/6
(t ′ = √

3t, t ′′ = t).

the first derivative of the internal energy in a convenient form.
(A detailed derivation is presented in Appendix C.) Using
Eq. (C7) we have

∂U

∂θ
= −M · ∂B

∂θ

= [K2 + 2(K4 + K ′
4 cos 4ϕ) sin2 θ ] sin 2θ, (23)

∂U

∂ϕ
= −M · ∂B

∂ϕ

= −4K ′
4 sin 4ϕ sin4 θ, (24)

where M is the spin magnetic moment of the electrons defined
in Eq. (14), and B is the effective magnetic field produced by
the local moments defined in Eq. (8). From the phenomeno-
logical expression for UMAE(θ, ϕ), we see that the magnetic
torque M × B vanishes for the high-symmetry nearest- and

next-nearest-neighbor directions (θ = π/2 and ϕ = nπ/4,
with n ∈ {0, 1, . . . , 7}), and for magnetization normal to the
lattice plane (θ = 0, π ).

The second derivatives of the internal energy are particu-
larly simple to evaluate for these high-symmetry directions,
since cross derivatives involving both polar and azimuthal
angles vanish. We therefore only need to evaluate only
∂2U/∂θ2 and ∂2U/∂φ2. Utilizing Eqs. (C9) and (6), we see
that we require only the Cartesian component of the spin
susceptibility tensor for the plane perpendicular to a chosen
magnetization direction (i.e., we need only the transverse
spin susceptibility). For the high-symmetry directions the net
spin moment of the itinerant electrons is aligned with the
ferromagnetic background, M ‖ B, and so the second term
in Eq. (20) vanishes for the transverse susceptibility. For the
in-plane high-symmetry directions, Eqs. (20) and (C9) lead to

1

2

∂2U

∂θ2

∣∣∣∣
M‖x̂

= J 2

2

(
M

J
− χzz

)
= −K2 − 2(K4 + K ′

4),

(25)

1

2

∂2U

∂ϕ2

∣∣∣∣
M‖x̂

= J 2

2

(
M

J
− χyy

)
= −8K ′

4, (26)

and for the polar magnetization orientation

1

2

∂2U

∂θ2

∣∣∣∣
M‖ẑ

= J 2

2

(
M

J
− χxx

)
= K2. (27)

The M/J contribution comes from the first term on the right-
hand side of (C9).

When M ‖ ẑ, the system has fourfold rotational symmetry
from which it follows that χxx = χyy and χxy = χyx = 0.
We can gain further insight into the MAE by separating the
transverse spin susceptibility into intraband and interband
contributions, as explained in Appendix D. To simplify this
discussion, we subtract a common term

χ̄ =
∫

dk
(2π )2

f+(k) − f−(k)

|b(k)| , (28)

from the quantities entering Eqs. (25) and (27). The M/J term
then becomes

χ0 = M

J
− χ̄ =

∫
dk

(2π )2

B · bR(k)

J 2

f+(k) − f−(k)

|b(k)| , (29)

which we will refer to as the volume susceptibility. The
expression for the intraband part of the spin susceptibility
follows from Eq. (D7) and does not contain χ̄ :

χαα
intra =

∫
dk

(2π )2
[b̂α (k)]2

∑
n

δ(EF − En(k)). (30)

This term is however present in the interband part of the spin
susceptibility, so we subtract it from Eq. (D8):

χ̄αα
inter = χαα

inter − χ̄

= −
∫

dk
(2π )2

[b̂α (k)]2 f+(k) − f−(k)

|b(k)| . (31)

In the previous two equations α = x, y, z, and b̂α (k) are the
Cartesian components of the unit vector defining the spin
quantization axis for each k [see Eq. (8)]. We see that χαα

intra
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arises from the Fermi surface and is positive definite, while
χ̄αα

inter arises from the Fermi sea and is negative definite.
Whether we have PMA or IMA can then be established

in two ways. When M ‖ x̂ we have χzz = 0, and the sign of
the MAE is determined by χ0. On the other hand, for M ‖ ẑ
we find that χ0 = 0, so the sign of the MAE is decided by
the competition between the intraband and interband contri-
butions to the spin susceptibility χxx . The detailed analysis in
Sec. V shows that both results are consistent, and can be given
a meaningful interpretation.

Next we look more closely at the conditions that favor
PMA. Let M ‖ ẑ and |t ′′| � J . Making the constant matrix
element approximation in Eq. (30), we find

χxx
intra ≈ 〈[b̂x (k)]2〉

∫
dk

(2π )2

∑
n

δ(EF − En(k))

= (t ′′)2

2J 2
ρ(EF). (32)

Here ρ(EF) is the total density of states at the Fermi energy.
The average of the matrix element was simplified by assuming
that the exchange fields are much stronger than the spin-orbit
fields, so that |b(k)| ≈ J . Evaluating Eq. (31) in the same way
we obtain

χ̄ xx
inter ≈ − (t ′′)2

2J 3
M. (33)

Combining these expressions we arrive at an appealing ap-
proximate form for the uniaxial anisotropy constant,

K2 ≈ Kref[M − Jρ(EF)], (34)

where the scale of the anisotropy constant

Kref = 1

4

(t ′′)2

J
, (35)

is a useful figure of merit for MAE. As will be shown in
Sec. IV, this is the leading order contribution to K2 for the
gapped half-filled case [M = 1 and ρ(EF) = 0]. We conclude
that PMA is likely to be stable when the density of states at the
Fermi level is small: Since 0 � M � 1, we can expect PMA if
Jρ(EF) � 1. The states at the Fermi level are the ones affected
by SOC in the most important way, in energetic terms. A
large DOS at the Fermi level then translates to a large number
of single-particle states that gain the most energy from SOC
once the magnetization is tilted away from the perpendicular
direction, which explains why this contribution favors IMA.
Equation (34) is approximate but provides a useful reference
point for the case studies discussed in detail in Sec. V below.

IV. PERTURBATION THEORY FOR THE GAPPED
HALF-FILLED CASE

The simplest limit to consider is the case in which the
ferromagnetic exchange splitting is large enough to produce a
gap. In the half-filled ferromagnetic insulator case, the Fermi
level lies in this gap, the majority band is full, f+(k) = 1, and
the minority band is empty, f−(k) = 0. The ferromagnetic
insulator was found numerically to have PMA, both in our
calculations and in Ref. [25]. Now we shall prove this property
analytically. Starting from Eqs. (8), (10), and (15), the internal

energy for this case is simply

U =
∫

dk
(2π )2

[E0(k) − |b(k)|]. (36)

We see that only the second term in the integrand contains
information about the orientation of the ferromagnetic back-
ground, given by the angles θ and ϕ.

We can write down the spin splitting |b(k)| to extract
explicit θ and ϕ dependence (see Appendix A for details):

|b(k)| =
∞∑

n=0

n∑
p=0

Bp
n (k)(sin θ )n(cos ϕ)p(sin ϕ)n−p, (37)

with expansion coefficients

Bp
n (k) = (−1)p2n

( 1
2

n

)(
n

p

)
(J t ′′)n(sin ky )p(sin kx )n−p

[|bR(k)|2 + J 2]n− 1
2

.

(38)
The internal energy then has the corresponding expansion

U (θ, ϕ) =
∞∑

n=0

n∑
p=0

Up
n (sin θ )n(cos ϕ)p(sin ϕ)n−p, (39)

with the coefficients

Up
n = −

∫
dk

(2π )2
Bp

n (k). (40)

Because the integrand is odd under kx → −kx and ky → −ky ,
U

2p+1
n = 0 and Uk

2n+1 = 0; i.e., only terms even in both p and
n survive. In combination with the symmetry of the binomial
coefficients, we also have U

2n−2p

2n = U
2p

2n . It follows that the
first terms in the expansion are

U (θ, ϕ) ≈ U 0
0 + U 0

2 sin2 θ

+
(

6U 0
4 + U 2

4

8
+ 2U 0

4 − U 2
4

8
cos 4ϕ

)
sin4 θ, (41)

in agreement with the phenomenological form given in
Eq. (21).

For the gapped half-filled case, it is consistent to expand
the integrand in the |t ′′| � J limit, which after some ma-
nipulation (see Appendix A for details) gives the following
expressions for the expansion coefficients of internal en-
ergy(skipping the constant shift of the energy):

U 0
2 = 1

4

(t ′′)2

J
− 15

64

(t ′′)4

J 3
, (42a)

U 0
4 = 15

64

(t ′′)4

J 3
, (42b)

U 2
4 = 15

16

(t ′′)4

J 3
. (42c)

From Eqs. (21) and (41), the anisotropy coefficients are
then

K2 = 1

4

(t ′′)2

J
− 15

32

(t ′′)4

J 3
,

K4 = 75

256

(t ′′)4

J 3
, K ′

4 = −K4

5
. (43)
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Δ
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FIG. 3. MAE from perturbation theory for the half-filled case,
Ne = 1, as a function the coupling strength to the ferromagnetic
background J (in units of the hopping strength t). The solid lines
are the numerically calculated internal energy differences �U =
U ( π

2 , 0) − U (0, 0). The dashed lines are the corresponding combina-
tion of anisotropy coefficients in Eq. (22), using the analytical forms
of Eq. (42). The vertical dotted line marks the closing of the gap in
the weak SOC limit. We plot the results in two ways. (a) The energy
axis is scaled by t ′′2/16, to factor out the expected dependence on
SOC strength. For a given Rashba interaction strength, anisotropy
energy is largest when the exchange coupling is just strong enough
to open a gap. (b) Anisotropy energy in units of Kref = (t ′′)2/4J , the
form approached in the large-J limit.

This proves that the gapped half-filled case always dis-
plays PMA (when perturbation theory is valid). The fourth-
order correction to K2 weakens the anisotropy, but K4 re-
inforces its easy-axis character. The in-plane anisotropy is
weak when compared to the uniaxial one, and favors align-
ment along the nearest-neighbor directions. Appendix D 2
derives the same results starting from the transverse spin
susceptibility.

Figure 3 shows the region of validity and the breakdown of
perturbation theory for this case. The maximum value of the
PMA is obtained when the gap between the bands is about to
close (e.g., when J ≈ 4t for small φR or t ′′ � t ′), which sets
a limit on how much the PMA can be enhanced by reducing
the magnitude of J .

V. THREE CASE STUDIES

We now present a detailed analysis of the MAE for three
different choices of model parameters, meant to illustrate
different physical regimes at the ferromagnet/heavy-metal
interface: (i) strong exchange (J � t ′ � t ′′), (ii) intermedi-
ate exchange (J ∼ t ′ � t ′′), and (iii) weak exchange (t ′ �
J ∼ t ′′). We fix the SOC strength to be smaller than the
nonrelativistic bandwidth, by setting φR = π/20 (t ′ = 2.0t

and t ′′ = 0.3t). The three case studies are then defined by
how the exchange energy due to the ferromagnetic coupling
compares to these two energy scales. We shall compare the
local characterization of the MAE via the susceptibility with
the global characterization via internal energy differences. For
the present model, the contribution to the MAE from the
volume susceptibility [Eq. (29)] vanishes when M ‖ ẑ, while
it is the only nonvanishing contribution for M ‖ x̂.

We first consider the case where the exchange energy dom-
inates, by setting J = 10t . This leads to two well-separated
bands, as shown in Fig. 4(a). Figure 4(b) estimates the MAE
from the spin susceptibility, for two stable orientations of the
ferromagnetic background. We see that for most values of
Ne we find IMA, with PMA only in a narrow range around
Ne = 1. When M ‖ ẑ [Eq. (27)], the interband contribution
to the susceptibility [Eq. (31)] favors PMA, while the intra-
band contribution [Eq. (30)] favors IMA. The amplitude of
the intraband contribution is larger than the interband one,
and is maximized when the Fermi level is at the Van Hove
singularity in the DOS of each band. When Ne = 1 and M ‖ ẑ,
the intraband contribution must vanish because the system is
gapped. Only the interband term remains finite and it favors
PMA. When M ‖ x̂ [Eq. (25)], the volume susceptibility
[Eq. (29)] is the only nonzero contribution, and reproduces
essentially the same MAE as found for M ‖ ẑ. This agreement
shows that the higher-order anisotropy constants (K4 and K ′

4)
are very small when compared with K2, as anticipated from
perturbation theory. Figure 4(c) plots the MAE from the band
energy difference between M ‖ x̂ and M ‖ ẑ. The MAE from
this approach is in perfect agreement with the one extracted
from the susceptibility.

Decomposing the band energy into its constituents [see
Eq. (16)] we see that (i) the anisotropy of the nonrelativistic
kinetic energy (�U0) matches the intraband contribution to
the susceptibility (M ‖ ẑ), (ii) the anisotropy of the spin
polarization energy (�UB) matches the interband contribution
to the susceptibility (M ‖ ẑ), and (iii) half of the anisotropy of
the Rashba energy (�UR/2) matches the contribution from the
volume susceptibility (M ‖ x̂). We have verified the observa-
tion by van der Laan [22] and Antropov [21], that the MAE is
close to half of the anisotropy in the SOC (Rashba) energy, as
predicted when SOC is treated as a weak perturbation.

The behavior of the MAE can be qualitatively explained by
the approximate formula in Eq. (35). We find PMA near half
filling, as expected. Moving from electron per site Ne = 1 to
Ne = 0, the interband contribution is accurately proportional
to M , which decreases monotonically to zero. The intraband
contribution qualitatively follows ρ(EF), which increases up
to the Van Hove singularity and then decreases again, but
the functional forms are not identical. The intraband contri-
bution is thus more sensitive to the constant matrix element
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FIG. 4. MAE for the strong exchange case, J � t ′ � t ′′. (a) Total DOS and number of electrons as a function of energy, for M ‖ ẑ. (b)
MAE from the second derivatives of the band energy, from the connection to its phenomenological form. For M ‖ x̂ [Eq. (25)], only χ 0

contributes [Eq. (29)]. For M ‖ ẑ [Eq. (27)], χ 0 does not contribute, and we plot the intraband [Eq. (30)] and interband [Eq. (31)] contributions
from the uniform spin susceptibility, as well as the net result. (c) Internal energy differences �U = U ( π

2 , 0) − U (0, 0), decomposed using
Eq. (16). The curve showing half of the difference in the SOC energy overlaps almost perfectly with the net internal energy differences, which
in turn agrees very well with the results obtained from the susceptibility calculations; cf. panel (b). Parameters: J = 10t and φR = π/20
(t ′ = 2.0t, t ′′ = 0.3t).

approximation made in deriving Eq. (35) than the interband
contribution. The transition from PMA to IMA is predicted by
the M ≈ Jρ(EF) criterion of Eq. (35) to occur at Ne = 0.9, in
good agreement with the exact results.

Next we consider the case where the exchange energy
is comparable to the nonrelativistic bandwidth, by setting
J = t ′. Now the two bands overlap, as shown in Fig. 5(a),
with minority band occupation beginning for Ne > 0.5 (EF >

−2t), and the lower band being completely full for Ne >

1.5 (EF > 2t). This intermediate exchange coupling strength
case is applicable to many ferromagnetic metals. Figure 5(b)
estimates the MAE from the spin susceptibility, and shows
that PMA is found in a much wider range of Ne than in
the strong exchange interaction case. This was expected from
Eq. (34) when comparing to the previous case, as now J is
ten times weaker, so the condition M ≈ Jρ(EF) is satisfied
for a smaller value of Ne. Comparing Eq. (30) and Eq. (31), it
appears that the Fermi sea term can be enhanced by reducing
the k-dependent spin splitting |b(k)|, which we achieved by
weakening J , so that now the interband contribution has a
larger amplitude than the intraband one. However, near Ne =
0 (likewise near Ne = 2), the intraband contribution is linear
in Ne while the interband one is quadratic, so that the former
can overtake the latter, and thus favors IMA. As already shown
in Fig. 3, the MAE reaches only 20% of Kref at Ne = 1
(gapless system), in line with the discussion of Sec. IV.
Figure 5(c) plots the MAE from the band energy difference
between M ‖ x̂ and M ‖ ẑ and its decomposition. Once again
the band energy difference agrees very well with the results
obtained from the susceptibility calculations, and with the
estimate of �UR/2. The previous identifications between the
intraband and interband contributions to the susceptibility and
the anisotropies of the nonrelativistic kinetic energy and of the
spin polarization energy, respectively, are seen to hold only
while one of the bands is either completely empty (Ne < 0.5)
or completely full (Ne > 1.5). Although those two contri-
butions to the energy exhibit discontinuous behavior when
both bands become partially filled, their sum is continuous, as
can be concluded from �Utotal. This shows that the energetic
competition between the Rashba SOC and the coupling to the

ferromagnetic background is settled differently when either
only one or when both bands are partially filled, presumably
due to an allowed transfer of electronic occupation between
the two bands at the Fermi energy in the latter case.

Lastly we consider the case where the exchange energy
is comparable to the SOC strength, by setting J = t ′′. In
this regime, the splitting between the two bands is small, as
seen in Fig. 6(a), as the bandwidth is mostly set by t ′, and
t ′ � t ′′ ∼ J . The intraband and interband contributions to the
susceptibility are almost identical, Fig. 6(b), leading to a small
net value of the MAE. Now we find PMA for almost all
values of Ne, except at the band edges (Ne ≈ 0 or 2) where
IMA is recovered. For these limiting values of the filling the
band dispersions can be approximated by the free-electron
Rashba model, for which IMA is the expected result [24,25].
Although it is not strictly applicable in this case, Eq. (34)
predicts that the range of Ne around half-filling where PMA
is found is expected to become wider as J gets weaker, as
observed in our data. Figure 6(c) provides a better view of
the behavior of the MAE, using the band energy difference
between M ‖ x̂ and M ‖ ẑ and its decomposition. As found
for the previous case, when both bands are partially filled
there is no direct correspondence between the contributions
to the band energy difference and the contributions to the
susceptibility. Estimating the band energy difference by half
of the anisotropy of the Rashba energy remains an excellent
approximation, also in very good agreement with the results
from the volume susceptibility.

VI. DISCUSSION AND CONCLUSIONS

In this work, we explored a simple tight-binding model
of spin-orbit-coupled electrons exchange-coupled to a back-
ground ferromagnetic order parameter, meant to abstract the
essential electronic structure properties of the interface be-
tween a ferromagnetic layer and a heavy-metal layer. The
simplicity of the model made it attractive to consider different
approaches to the calculation of the magnetic anisotropy
energy: a global approach, based on band energy differences,
and a local approach, based on the curvature of the energy
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FIG. 5. MAE for the intermediate exchange case, J ∼ t ′ � t ′′. (a) Total DOS and number of electrons as a function of Fermi energy, for
M ‖ ẑ. (b) MAE from the second derivatives of the band energy, from the connection to its phenomenological form. For M ‖ x̂ [Eq. (25)],
only χ 0 contributes [Eq. (29)]. For M ‖ ẑ [Eq. (27)], χ 0 does not contribute, and we plot the intraband [Eq. (30)] and interband [Eq. (31)]
contributions from the uniform spin susceptibility, as well as the net result. (c) Internal energy differences �U = U ( π

2 , 0) − U (0, 0),
decomposed using Eq. (16). The curve showing half of the difference in the SOC energy overlaps almost perfectly with the net internal
energy differences, which in turn agrees very well with the results obtained from the susceptibility calculations; cf. panel (b). Parameters:
J = t ′ and φR = π/20 (t ′ = 2.0t, t ′′ = 0.3t).

for an equilibrium ferromagnetic orientation. Besides repro-
ducing the results of previous work [24,25], by decomposing
the spin susceptibility into intra- and interband contributions
and connecting them to the anisotropy of different energy
terms in the Hamiltonian, we provide a detailed view on how
the competition between in-plane and perpendicular magnetic
anisotropies is settled. Reassuringly, the global and local
approaches to the magnetic anisotropy are found to be com-
patible, due to weak higher-order anisotropy contributions.
Perturbation theory was used to prove analytically that when
the system is gapped, perpendicular magnetic anisotropy
always ensues.

We found that the perpendicular magnetic anisotropy can
be enhanced by tuning the splitting of the energy bands to the
point where the gap between them is about to close (besides
the obvious path of increasing the magnitude of the spin-
orbit coupling). This has the added advantage of increasing
the range of filling values for which perpendicular magnetic
anisotropy is present in the model. The impact of tuning the
effective splitting of the energy bands at the interface between

a ferromagnet and a heavy metal can be explored, both with
density functional theory calculations and experimentally, by
inserting dopants or a decoupling layer at the interface. These
studies would also uncover which are the generic features of
the interface-driven magnetic anisotropy and which are the
model-specific ones.

More importantly, we have shown that the magnetic
anisotropy is usefully viewed as arising from a competition
between Fermi surface and Fermi sea terms, with PMA arising
when the former is overcome by the latter. This should also
hold for more complicated band structures whose details may
also play an important role in determining how this compe-
tition is settled. In Eq. (34) we presented a simple approxi-
mate relation for the leading uniaxial anisotropy coefficient,
K2 ≈ Kref[M − Jρ(EF)]. The overall scale of the MAE is
given by Kref = (t ′′)2/4J . The interband term scales with the
magnitude of the spin moment M , explaining why it is largest
when the majority band is completely full and the minority
band is completely empty. The intraband term scales with the
density of electronic states at the Fermi energy ρ(EF), and so
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FIG. 6. MAE for the weak exchange case, t ′ � J ∼ t ′′. (a) Total DOS and number of electrons as a function of energy, for M ‖ ẑ. (b) MAE
from the second derivatives of the band energy, from the connection to its phenomenological form. For M ‖ x̂ [Eq. (25)], only χ 0 contributes
[Eq. (29)]. For M ‖ ẑ [Eq. (27)], χ 0 does not contribute, and we plot the intraband [Eq. (30)] and interband [Eq. (31)] contributions from the
uniform spin susceptibility, as well as the net result. (c) Internal energy differences �U = U ( π

2 , 0) − U (0, 0), decomposed using Eq. (16). The
curve showing half of the difference in the SOC energy overlaps almost perfectly with the net internal energy differences, which in turn agrees
very well with the results obtained from the susceptibility calculations; cf. panel (b). Parameters: J = t ′′ and φR = π/20 (t ′ = 2.0t, t ′′ = 0.3t).

134404-9



CHAUDHARY, DIAS, MACDONALD, AND LOUNIS PHYSICAL REVIEW B 98, 134404 (2018)

is most important when the Fermi surface is large and bands
are flat. The competition between the two quantities is set
by the magnitude of the exchange splitting J . We speculate
that these simple considerations should also extend to more
complex multiband systems, either if the magnetic anisotropy
is contributed mostly by a single pair of bands, or if the
multiband spin susceptibility can be well approximated by a
sum of pairwise band contributions. In this way, the electronic
structure of the interface states can engineered in order to
optimize PMA.

On the theoretical side, the calculation of the magnetic
anisotropy energy from realistic band structures remains a
challenging problem. The magnetic force theorem has been
employed to replace the total energy difference between two
self-consistent calculations for orthogonal directions of the
magnetization by the corresponding difference in band ener-
gies, requiring only one self-consistent calculation [15]. In a
similar vein, the first derivative of the energy with respect to
the orientation of the magnetization (the so-called magnetic
torque) has also been effectively deployed [20]. Here we
proposed to utilize the static uniform spin susceptibility to
obtain the curvature of the energy for an equilibrium ori-
entation of the magnetization, which requires a single self-
consistent calculation. We also validated the proposal of van
der Laan [22] and Antropov [21] to consider the anisotropy
of the spin-orbit coupling energy term in the Hamiltonian
as an accurate approach to compute the magnetic anisotropy
energy. These two methods deserve further comparison within
the context of realistic electronic structure calculations.

ACKNOWLEDGMENTS

G.C. acknowledges support from the Deutscher Akademis-
cher Austauschdienst (DAAD) for a visit to Forschungszen-
trum Jülich, where the initial part of the work was performed.
M.d.S.D. and S.L. acknowledge funding by the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (ERC-Consolidator
Grant No. 681405–DYNASORE).

APPENDIX A: GAPPED SYSTEM AT HALF FILLING:
TECHNICAL DETAILS OF THE PERTURBATION THEORY

Here we discuss the technical details of the perturbation
theory for the gapped half-filled case discussed in Sec. IV of
the main text. The expansion of the spin splitting |b(k)| in
order to extract the θ and ϕ dependence is obtained using the
following steps:

|b(k)| =
√

|bR(k)|2 + J 2 + 2B · bR(k)

= b0(k)
√

1 + cos γ (k)

= b0(k)
∞∑

n=0

( 1
2

n

)
[cos γ (k)]n. (A1)

Here

b0(k) =
√

|bR(k)|2 + J 2, (A2a)

cos γ (k) = 2B · bR(k)

|bR(k)|2 + J 2
. (A2b)

The expansion can be written more explicitly to obtain
Eq. (37):

|b(k)| =
∞∑

n=0

( 1
2

n

)
(2J t ′′)n

[b0(k)]2n−1 (sin θ )n

× (sin ky cos ϕ − sin kx sin ϕ)n

=
∞∑

n=0

( 1
2

n

)
(2J t ′′)n

[b0(k)]2n−1
(sin θ )n

×
n∑

p=0

(
n

p

)
(−1)p(sin ky cos ϕ)p(sin kx sin ϕ)n−p

=
∞∑

n=0

n∑
p=0

Bp
n (k)(sin θ )n(cos ϕ)p(sin ϕ)n−p. (A3)

For the gapped half-filled case, in the |t ′′| � J limit the
following expansion coefficients are obtained:

B0
0 (k) ≈ J + |bR(k)|2

2J

(
1 − |bR(k)|2

4J 2

)
, (A4a)

B0
2 (k) ≈ − (t ′′)2

2J
sin2 kx

(
1 − 3|bR(k)|2

2J 2

)
, (A4b)

B0
4 (k) ≈ −5t ′′4

8J 3
sin4 kx, (A4c)

B2
4 (k) ≈ −15(t ′′)4

4J 3
sin2 kx sin2 ky. (A4d)

The following integral can then be used to generate all U
p
n

coefficients:

I�(x, y) = 1

(2π )2

∫ π

−π

dkx

∫ π

−π

dky (x sin2 kx + y sin2 ky )�

=
�∑

k=0

(
�

k

)
xky�−k 4

π2

∫ π
2

0
dkx (sin kx )2k

×
∫ π

2

0
dky (sin ky )2(�−k)

=
�∑

k=0

(
�

k

)
(2k − 1)!!

(2k)!!

[2(� − k) − 1]!!

[2(� − k)]!!
xky�−k.

(A5)

For the general case of the integrand we derive

(� − m − n)!

�!

∂m+nI�

∂xm∂yn
(1, 1)

=
∫

dk
(2π )2

(sin2 kx )m(sin2 ky )n(sin2 kx + sin2 ky )�−m−n.

(A6)

The polynomials that will be needed in the following are

I0(x, y) = 1, I1(x, y) = x + y

2
,

I2(x, y) = 3

8
(x2 + y2) + 1

2
xy. (A7)
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The coefficients in the expansion of the internal energy
(skipping the constant shift of the energy) are then obtained
using the above integral identities in Eq. (40):

U 0
2 = 1

2

(t ′′)2

J

∂I1

∂x
(1, 1) − 3

8

(t ′′)4

J 3

∂I2

∂x
(1, 1)

= 1

4

(t ′′)2

J
− 15

64

(t ′′)4

J 3
, (A8a)

U 0
4 = 5

16

(t ′′)4

J 3

∂2I2

∂x2
(1, 1) = 15

64

(t ′′)4

J 3
, (A8b)

U 2
4 = 15

8

(t ′′)4

J 3

∂2I2

∂x∂y
(1, 1) = 15

16

(t ′′)4

J 3
. (A8c)

APPENDIX B: INTERNAL ENERGY VERSUS
GRAND POTENTIAL

The properties of a system with a fixed number of electrons
held at zero temperature can be derived from the internal
energy, Eq. (15). Suppose the Hamiltonian depends on a set
of parameters X, and we wish to find how the internal energy
changes upon small changes in those parameters. The first
derivative is

∂U

∂Xi

∣∣∣∣
Ne

= ∂U

∂Xi

∣∣∣∣
EF

+ ∂U

∂EF

∂EF

∂Xi

=
∫ EF

−∞
dE

∂ρ(E, X)

∂Xi

E + ρ(EF, X)EF
∂EF

∂Xi

. (B1)

The vertical bars indicate which variables are kept fixed. Us-
ing Eq. (13) and the requirement of fixed number of electrons,
its derivative must be zero,

0 = ∂Ne

∂Xi

= ∂Ne

∂Xi

∣∣∣∣
EF

+ ∂Ne

∂EF

∂EF

∂Xi

=
∫ EF

−∞
dE

∂ρ(E, X)

∂Xi

+ ρ(EF, X)
∂EF

∂Xi

, (B2)

so the first derivative of the internal energy can be rewritten as

∂U

∂Xi

∣∣∣∣
Ne

=
∫ EF

−∞
dE

∂ρ(E, X)

∂Xi

(
E − EF

)
. (B3)

This coincides with the first derivative of the grand potential,

� =
T =0

U − EFNe,
∂�

∂Xi

∣∣∣∣
EF

= ∂U

∂Xi

∣∣∣∣
Ne

, (B4)

which is the expected thermodynamic result. The grand
canonical ensemble is often used instead of the canonical one,
as calculations tend to be simpler.

Starting from Eq. (B3), the second derivative of the internal
energy is

∂2U

∂Xi∂Xj

∣∣∣∣
Ne

=
∫ EF

−∞
dE

∂2ρ(E, X)

∂Xi∂Xj

(E − EF)

− ∂EF

∂Xi

∫ EF

−∞
dE

∂ρ(E, X)

∂Xj

= ∂2�

∂Xi∂Xj

∣∣∣∣
EF

+ ρ(EF, X)
∂EF

∂Xi

∂EF

∂Xj

. (B5)

We see that the second derivatives are related by a factor
which is related to how the number of electrons changes upon
variation of the parameters in the Hamiltonian. This correction
clearly vanishes for a gapped system [ρ(EF, X) = 0] or when
varying the parameters leaves the Fermi energy unchanged.

APPENDIX C: GREEN’S FUNCTIONS AND THE
HELLMANN-FEYNMAN THEOREM

For our purposes, the Green’s function is the resolvent of
the Hamiltonian,

[E − H(X)]G(E, X) = I, (C1)

where the Hamiltonian is assumed to depend on some parame-
ters X, and I is the identity matrix for a chosen representation.
Taking the derivate with respect to the energy parameter we
find

∂G(E, X)

∂E
= −G(E, X)G(E, X), (C2)

and with respect to a Hamiltonian parameter we get

∂G(E, X)

∂Xi

= G(E, X)
∂H
∂Xi

G(E, X). (C3)

Using the Dirac identity we obtain the spectral density matrix
from the discontinuity of the Green’s function across the real
energy axis,

δ(E − H(X)) = lim
η→0+

G(E − iη, X) − G(E + iη, X)

2πi

≡ − 1

π
ImG(E, X). (C4)

The density of states of the system is then given by

ρ(E, X) = − 1

π
ImTrG(E, X), (C5)

and its derivative with respect to a Hamiltonian parameter by

∂ρ(E, X)

∂Xi

= − 1

π
ImTrG(E, X)

∂H
∂Xi

G(E, X)

= 1

π
ImTr

∂G(E, X)

∂E

∂H
∂Xi

, (C6)

using the cyclic property of the trace.
We can now replace these results in the first derivative of

the internal energy, Eq. (B3),

∂U

∂Xi

∣∣∣∣
Ne

= 1

π
ImTr

∫ EF

−∞
dE

∂G(E, X)

∂E

∂H
∂Xi

(E − EF)

= − 1

π
ImTr

∫ EF

−∞
dE G(E, X)

∂H
∂Xi

≡
〈
∂H
∂Xi

〉
, (C7)

after integration by parts. This is the Hellmann-Feynman
theorem [27,28]: the derivative of the energy with respect to a
parameter is given by the ground state expectation value of
the derivative of the Hamiltonian with respect to the same
parameter.
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In Eq. (B2) we find

∂Ne

∂Xi

∣∣∣∣
EF

=
∫ EF

−∞
dE

∂ρ(E, X)

∂Xi

= 1

π
ImTrG(EF, X)

∂H(X)

∂Xi

≡ −
〈
∂H
∂Xi

〉
EF

, (C8)

and using this and Eq. (C3) we can express the second
derivative of the internal energy, Eq. (B5), as

∂2U

∂Xi∂Xj

∣∣∣∣
Ne

=
〈

∂2H
∂Xi∂Xj

〉

− 1

π
ImTr

∫ EF

−∞
dE G(E)

∂H
∂Xi

G(E)
∂H
∂Xj

+ 1

ρ(EF)

〈
∂H
∂Xi

〉
EF

〈
∂H
∂Xj

〉
EF

. (C9)

The last term must be omitted for a gapped system (no Fermi
surface).

APPENDIX D: ANATOMY OF THE STATIC UNIFORM
SUSCEPTIBILITY

In this Appendix the expression for the susceptibility using
Green’s functions, Eq. (20) [see also Eq. (C9)], is recast in the
more familiar form from perturbation theory. We recall the
spectral representation of the Green’s function, Eq. (17):

G(k, E) =
∑

n

Pn(k)

E − En(k)
,

Pn(k) = 1

2
[σ 0 + nb̂(k) · σ ], n = ±. (D1)

We only have to rewrite the term involving the product of
Green’s functions,

1

π
ImTr

∫ EF

−∞
dE

∫
dk

(2π )2
σαG(k, E)σβG(k, E)

=
∑
n′n

1

π
ImTr

∫ EF

−∞
dE

∫
dk

(2π )2

σαPn′ (k)

E − En′ (k)

σβPn(k)

E − En(k)
.

(D2)

To evaluate the energy integral we require the partial
fraction decomposition of

1

E − En′ (k)

1

E − En(k)

= 1

En′ (k) − En(k)

[
1

E − En′ (k)
− 1

E − En(k)

]
, (D3)

which holds only if n �= n′ (interband contribution), and con-
tributes simple poles to the energy integral:

− 1

π
ImTr

∫ EF

−∞
dE

1

E − En(k)
≡ fn(k), (D4)

with fn(k) = �(EF − En(k)) being the zero-temperature
limit of the Fermi-Dirac distribution. When n′ = n we have

degeneracies (intraband term), which contribute a second-
order pole and so have to be treated separately:

− 1

π
ImTr

∫ EF

−∞
dE

1

[E − En(k)]2 = ∂fn(k)

∂En(k)
. (D5)

The matrix elements are given by

Mαβ

n′n(k) = TrσαPn′ (k)σβPn(k)

= 1 − n′n
2

δαβ + n′nb̂α (k)b̂β (k)

− i
n′ − n

2

∑
γ

εαβγ b̂γ (k), (D6)

with εαβγ the Levi-Civita symbol. We can then write the
susceptibility as χαβ = χ

αβ

intra + χ
αβ

inter, with

χ
αβ

intra =
∫

dk
(2π )2

b̂α (k)b̂β (k)
∑
n=±

δ(EF − En(k))

− mα (EF)mβ (EF)

ρ(EF)
, (D7)

and

χ
αβ

inter = 2
∫

dk
(2π )2

[b̂α (k)b̂β (k) − δαβ]
f−(k) − f+(k)

E−(k) − E+(k)
.

(D8)

The intraband term collects the contributions from the Fermi
energy, while the interband term collects those from the Fermi
sea. The contribution of the antisymmetric part of the matrix
element to the interband term cancels out.

1. Ferromagnetic system without spin-orbit coupling

For this example we can take b̂(k) = S = ẑ without loss of
generality, as without SOC the system is invariant under spin
rotations. The energy dispersion of Eq. (10) becomes

En(k) = E0(k) − nJ, (D9)

and the matrix elements simplify to

Mαβ

n′n(k) = δαβ

1 − n′n
2

+ n′nδαzδβz − iεαβz

n′ − n

2
. (D10)

The longitudinal susceptibility (α = β = z) arises from the
intraband contributions (n′ = n), while the transverse suscep-
tibility (α, β = x, y) arises from the interband contributions
(n′ �= n). From Eq. (D7), the longitudinal susceptibility is thus

χzz = ρ+(EF) + ρ−(EF) + [ρ+(EF) − ρ−(EF)]2

ρ(EF)

= 4ρ+(EF)ρ−(EF)

ρ(EF)
, (D11)

with ρn(EF) the density of states at the Fermi energy of the
n-band [check Eq. (12)]. Here the correction term is crucial:
if one band is partially occupied, ρ+(EF) �= 0, and the other
band is empty, ρ−(EF) = 0, then χzz = 0, as the increase
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in the spin moment [the ρ+(EF) contribution from the first
term] is canceled by the requirement of fixed number of
electrons (enforced by the correction term). From Eq. (D8),
the transverse susceptibility is [check Eq. (14)]

χxx = χyy = −
∫

dk
(2π )2

f−(k) − f+(k)

Jsd
= M

J
. (D12)

This cancels precisely the volume susceptibility, χ0, and
makes the derivatives of the internal energy with respect to the
angles defining the ferromagnetic direction vanish, Eqs. (25),
(26), and (27). As discussed in Sec. III, this term is also
present in the general case both in the transverse susceptibil-
ities and in the volume susceptibility, and so those quantities
are defined in the main text by analytically subtracting this
term from both of them.

2. Gapped system at half filling with S = ẑ

Now the Fermi energy lies in the gap, so one of the bands is
fully occupied, f+(k) = 1, and the other is empty, f−(k) = 0.
Thus there are no intraband contributions to the susceptibility
and the Fermi surface corrections vanish. From Eq. (D8) and
inserting the band dispersions of Eq. (10), the susceptibility is
then

χαβ =
∫

dk
(2π )2

δαβ − b̂α (k)b̂β (k)

|b(k)| . (D13)

The longitudinal susceptibility is

χzz =
∫

dk
(2π )2

1 − [b̂z(k)]2

|b(k)|

=
∫

dk
(2π )2

[b̂x (k)]2 + [b̂y (k)]2

|b(k)| �= 0, (D14)

which shows that the net spin moment is not saturated, due to
SOC. Using Eq. (8) we find (a = sin2 kx and b = sin2 ky)

χzz =
∫

dk
(2π )2

(t ′′)2(a + b)

[(t ′′)2(a + b) + (J )2]
3
2

≈ (t ′′)2

(J )3

∫
dk

(2π )2

[
(a + b) − 3(t ′′)2

2(J )2
(a + b)2

]

= (t ′′)2

(J )3

[
1 − 15(t ′′)2

8(J )2

]
. (D15)

The generating polynomial of Eq. (A5) was used to systemat-
ically evaluate the integrals.

The transverse susceptibility is

χxx =
∫

dk
(2π )2

1 − [b̂x (k)]2

|b(k)|

=
∫

dk
(2π )2

[b̂y (k)]2 + [b̂z(k)]2

|b(k)|

=
∫

dk
(2π )2

(t ′′)2a + (J )2

[(t ′′)2(a + b) + (J )2]
3
2

=
∫

dk
(2π )2

(t ′′ )2

2 (a + b) + (J )2

[(t ′′)2(a + b) + (J )2]
3
2

. (D16)

The symmetry of the integrand allows the replacement shown
on the third line, and in turn shows that χyy = χxx . Substitut-
ing the results from the longitudinal susceptibility,

χxx = 1

2
χzz − J

∂χ0

∂J

= 1

2
χzz − ∂M

∂J
+ χ0

= −1

2
χzz + χ0. (D17)

These identifications follow from the expression for the lon-
gitudinal uniform susceptibility and from the definition of the
spin moment, Eq. (14), which under the present assumptions
leads to the volume susceptibility

χ0 ≡ M

J
=

∫
dk

(2π )2

b̂z(k)

J
=

∫
dk

(2π )2

1

|b(k)| . (D18)

Using the expansion found for the longitudinal susceptibility,

χ0 ≈
∫

dk
(2π )2

[
(t ′′)2

2(J )2
(a + b) − 3(t ′′)4

8(J )4
(a + b)2

]

= (t ′′)2

2(J )2

[
1 − 15(t ′′)2

16(J )2

]
, (D19)

and from Eq. (27) we obtain the uniaxial magnetic anisotropy
coefficient,

∂2U

∂θ2

∣∣∣∣
M‖ẑ

= 1

2
(J )2χzz

= 1

2

(t ′′)2

J
− 15

16

(t ′′)4

(J )3
= 2K2, (D20)

in perfect agreement with the direct calculation of Sec. IV.

[1] I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamen-
tals and applications, Rev. Mod. Phys. 76, 323 (2004).

[2] F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. S. D. Beach, E.
E. Fullerton, C. Leighton, A. H. MacDonald, D. C. Ralph, D.
A. Arena, H. A. Dürr, P. Fischer, J. Grollier, J. P. Heremans,
T. Jungwirth, A. V. Kimel, B. Koopmans, I. N. Krivorotov,
S. J. May, A. K. Petford-Long, J. M. Rondinelli, N. Samarth,
I. K. Schuller, A. N. Slavin, M. D. Stiles, O. Tchernyshyov,

A. Thiaville, and B. L. Zink, Interface-induced phenomena in
magnetism, Rev. Mod. Phys. 89, 025006 (2017).

[3] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and
J. J. de Vries, Magnetic anisotropy in metallic multilayers, Rep.
Prog. Phys. 59, 1409 (1996).

[4] E. I. Dzyaloshinksii, Thermodynamic theory of weak ferro-
magnetism in antiferromagnetic substances, Sov. Phys. JETP 5,
1259 (1957).

134404-13

https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.89.025006
https://doi.org/10.1103/RevModPhys.89.025006
https://doi.org/10.1103/RevModPhys.89.025006
https://doi.org/10.1103/RevModPhys.89.025006
https://doi.org/10.1088/0034-4885/59/11/002
https://doi.org/10.1088/0034-4885/59/11/002
https://doi.org/10.1088/0034-4885/59/11/002
https://doi.org/10.1088/0034-4885/59/11/002


CHAUDHARY, DIAS, MACDONALD, AND LOUNIS PHYSICAL REVIEW B 98, 134404 (2018)

[5] T. Moriya, Anisotropic superexchange interaction and weak
ferromagnetism, Phys. Rev. 120, 91 (1960).

[6] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine,
New perspectives for Rashba spin-orbit coupling, Nat. Mater.
14, 871 (2015).

[7] D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura,
and H. Ohno, Magnetization vector manipulation by electric
fields, Nature (London) 455, 515 (2008).

[8] T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M.
Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S.
Mizukami et al., Large voltage-induced magnetic anisotropy
change in a few atomic layers of iron, Nat. Nanotechnol. 4, 158
(2009).

[9] R. Skomski, Simple Models of Magnetism (Oxford University
Press, 2008).

[10] F. Bloch and G. Gentile, Zur anisotropie der magnetisierung
ferromagnetischer einkristalle, Z. Phys. 70, 395 (1931).

[11] J. H. van Vleck, On the anisotropy of cubic ferromagnetic
crystals, Phys. Rev. 52, 1178 (1937).

[12] H. Brooks, Ferromagnetic anisotropy and the itinerant electron
model, Phys. Rev. 58, 909 (1940).

[13] P. Bruno, Tight-binding approach to the orbital magnetic mo-
ment and magnetocrystalline anisotropy of transition-metal
monolayers, Phys. Rev. B 39, 865 (1989).

[14] G. van der Laan, Microscopic origin of magnetocrystalline
anisotropy in transition metal thin films, J. Phys.: Condens.
Matter 10, 3239 (1998).

[15] G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Mag-
netocrystalline anisotropy and orbital moments in transition-
metal compounds, Phys. Rev. B 44, 12054 (1991).

[16] G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans,
Magnetic anisotropy of a free-standing Co monolayer and of
multilayers which contain Co monolayers, Phys. Rev. B 50,
9989 (1994).

[17] C. Andersson, B. Sanyal, O. Eriksson, L. Nordström, O. Karis,
D. Arvanitis, T. Konishi, E. Holub-Krappe, and J. H. Dunn,
Influence of Ligand States on the Relationship between Orbital
Moment and Magnetocrystalline Anisotropy, Phys. Rev. Lett.
99, 177207 (2007).

[18] S. V. Halilov, A. Ya. Perlov, P. M. Oppeneer, A. N. Yaresko,
and V. N. Antonov, Magnetocrystalline anisotropy energy in
cubic Fe, Co, and Ni: Applicability of local-spin-density theory
reexamined, Phys. Rev. B 57, 9557 (1998).

[19] M. Weinert, R. E. Watson, and J. W. Davenport, Total-energy
differences and eigenvalue sums, Phys. Rev. B 32, 2115 (1985).

[20] X. Wang, R. Wu, D.-S. Wang, and A. J. Freeman, Torque
method for the theoretical determination of magnetocrystalline
anisotropy, Phys. Rev. B 54, 61 (1996).

[21] V. Antropov, L. Ke, and D. Åberg, Constituents of magnetic
anisotropy and a screening of spin-orbit coupling in solids,
Solid State Commun. 194, 35 (2014).

[22] G. van der Laan, Magnetic Linear X-Ray Dichroism as a Probe
of the Magnetocrystalline Anisotropy, Phys. Rev. Lett. 82, 640
(1999).

[23] Y. A Bychkov and E. I. Rashba, Properties of a 2D electron gas
with lifted spectral degeneracy, JETP Lett. 39, 78 (1984).

[24] S. E. Barnes, J. Ieda, and S. Maekawa, Rashba spin-orbit
anisotropy and the electric field control of magnetism, Sci. Rep.
4, 4105 (2014).

[25] K.-W. Kim, K.-J. Lee, H.-W. Lee, and M. D. Stiles, Perpendic-
ular magnetic anisotropy of two-dimensional Rashba ferromag-
nets, Phys. Rev. B 94, 184402 (2016).

[26] A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancel-
lieri, and J.-M. Triscone, Tunable Rashba Spin-Orbit Interaction
at Oxide Interfaces, Phys. Rev. Lett. 104, 126803 (2010).

[27] H. Hellmann, Einführung in die Quantenchemie (Deuticke,
Leipzig, 1937).

[28] R. P. Feynman, Forces in molecules, Phys. Rev. 56, 340 (1939).

134404-14

https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nature07318
https://doi.org/10.1038/nature07318
https://doi.org/10.1038/nature07318
https://doi.org/10.1038/nature07318
https://doi.org/10.1038/nnano.2008.406
https://doi.org/10.1038/nnano.2008.406
https://doi.org/10.1038/nnano.2008.406
https://doi.org/10.1038/nnano.2008.406
https://doi.org/10.1007/BF01339586
https://doi.org/10.1007/BF01339586
https://doi.org/10.1007/BF01339586
https://doi.org/10.1007/BF01339586
https://doi.org/10.1103/PhysRev.52.1178
https://doi.org/10.1103/PhysRev.52.1178
https://doi.org/10.1103/PhysRev.52.1178
https://doi.org/10.1103/PhysRev.52.1178
https://doi.org/10.1103/PhysRev.58.909
https://doi.org/10.1103/PhysRev.58.909
https://doi.org/10.1103/PhysRev.58.909
https://doi.org/10.1103/PhysRev.58.909
https://doi.org/10.1103/PhysRevB.39.865
https://doi.org/10.1103/PhysRevB.39.865
https://doi.org/10.1103/PhysRevB.39.865
https://doi.org/10.1103/PhysRevB.39.865
https://doi.org/10.1088/0953-8984/10/14/012
https://doi.org/10.1088/0953-8984/10/14/012
https://doi.org/10.1088/0953-8984/10/14/012
https://doi.org/10.1088/0953-8984/10/14/012
https://doi.org/10.1103/PhysRevB.44.12054
https://doi.org/10.1103/PhysRevB.44.12054
https://doi.org/10.1103/PhysRevB.44.12054
https://doi.org/10.1103/PhysRevB.44.12054
https://doi.org/10.1103/PhysRevB.50.9989
https://doi.org/10.1103/PhysRevB.50.9989
https://doi.org/10.1103/PhysRevB.50.9989
https://doi.org/10.1103/PhysRevB.50.9989
https://doi.org/10.1103/PhysRevLett.99.177207
https://doi.org/10.1103/PhysRevLett.99.177207
https://doi.org/10.1103/PhysRevLett.99.177207
https://doi.org/10.1103/PhysRevLett.99.177207
https://doi.org/10.1103/PhysRevB.57.9557
https://doi.org/10.1103/PhysRevB.57.9557
https://doi.org/10.1103/PhysRevB.57.9557
https://doi.org/10.1103/PhysRevB.57.9557
https://doi.org/10.1103/PhysRevB.32.2115
https://doi.org/10.1103/PhysRevB.32.2115
https://doi.org/10.1103/PhysRevB.32.2115
https://doi.org/10.1103/PhysRevB.32.2115
https://doi.org/10.1103/PhysRevB.54.61
https://doi.org/10.1103/PhysRevB.54.61
https://doi.org/10.1103/PhysRevB.54.61
https://doi.org/10.1103/PhysRevB.54.61
https://doi.org/10.1016/j.ssc.2014.06.003
https://doi.org/10.1016/j.ssc.2014.06.003
https://doi.org/10.1016/j.ssc.2014.06.003
https://doi.org/10.1016/j.ssc.2014.06.003
https://doi.org/10.1103/PhysRevLett.82.640
https://doi.org/10.1103/PhysRevLett.82.640
https://doi.org/10.1103/PhysRevLett.82.640
https://doi.org/10.1103/PhysRevLett.82.640
https://doi.org/10.1038/srep04105
https://doi.org/10.1038/srep04105
https://doi.org/10.1038/srep04105
https://doi.org/10.1038/srep04105
https://doi.org/10.1103/PhysRevB.94.184402
https://doi.org/10.1103/PhysRevB.94.184402
https://doi.org/10.1103/PhysRevB.94.184402
https://doi.org/10.1103/PhysRevB.94.184402
https://doi.org/10.1103/PhysRevLett.104.126803
https://doi.org/10.1103/PhysRevLett.104.126803
https://doi.org/10.1103/PhysRevLett.104.126803
https://doi.org/10.1103/PhysRevLett.104.126803
https://doi.org/10.1103/PhysRev.56.340
https://doi.org/10.1103/PhysRev.56.340
https://doi.org/10.1103/PhysRev.56.340
https://doi.org/10.1103/PhysRev.56.340



