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In most existing pedestrian dynamic models, agents are modeled as sliding or jumping objects.
As a kind of bipedal creature, however, this assumption makes it difficult to include some important
human walking characteristics in the models, such as the periodicity of stepping, the adjustment of
step frequency and step length, and the change of personal space within the same step cycle. To
take these characteristics into consideration, a “Biped Model” is developed to simulate pedestrian
locomotion by physical step rather than by time step. The model consists of two components: the
stepping simulator and the adjustment of velocity for each step. Simulation results show that the
velocity-density relations are consistent with the empirical data. Stable stop-and-go waves are sim-
ulated with a critical density. Furthermore, with the considering of biped movement, the lock-step
phenomenon is reproduced. The model provides new possibilities to study crowd behavior while
considering personal bipedal mechanics.
Keywords: pedestrian dynamics, Biped Model, foot movement, stop-and-go waves, lock-step phe-
nomenon

I. INTRODUCTION

Simulation of pedestrian movement has been a hot
topic in recent years, because of its extensive applica-
tion in safety, building design, traffic facilities design, and
robotics. Many two-dimensional (2D) models have been
developed to simulate the movement with different ap-
proximations of the projection of pedestrian’s shape. A
circle is the most commonly used shape [1–4]. The diam-
eter of the circle is of the same width as the shoulders.
In cellular atuomata (CA) models, an agent is assigned a
grid of the cell. Shapes of the cell are usually square [5–7]
or hexagonal [8, 9]. To make the space in CA more flexi-
ble, multigrid models [10, 11] are developed by assigning
pedestrians in small 3 × 3 grids.

For the sake of more “accuracy”, several researchers
opted for different shapes to model pedestrian’s volume
exclusion. In Ref. [12], a pedestrian is represented by
three intersecting circles. In Ref. [13], a spherocylindrical
particle is adopted to naturally reproduce evacuations
through narrow doors. Marroquin et al. [14] approximate
the shape of a chest cross section of a human thorax by
the concept of Minkowski’s sum of a polygon with a disk.
The “body ellipse” was suggested to be the best two-
dimensional approximation of the human body [15, 16].
Based on this idea, a generalized centrifugal-force model
which included an elliptical volume exclusion of humans
was proposed by Chraibi et. al [17].

Although the above-mentioned models differ in pre-
cision and updating strategy, they still have something
in common: pedestrians are integral and their move-
ments are nonperiodic. Integral means a whole without
elements have relative motions. Nonperiodic means no
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biomechanical cycles are included. In this paper, we re-
fer to these integral and nonperiodic models as “particle
models”.

As a kind of bipedal creature, humans move forward
by stepping alternately with the left and right foot. This
kind of movement pattern results in some unique phe-
nomena that can hardly be investigated by particle mod-
els: lock-step phenomenon in high density crowd, tumble
and stampede, the effect of music and rhythm on indi-
vidual or crowd behavior, and pedestrians can still move
when there is no spare space for their bodies from the
top view. We think the above phenomena mainly result
from the following three characteristics of biped move-
ment: At first, walking is a periodic movement, and the
expected velocity is always stable within a step cycle. If
the actual velocity differs largely from the expected ve-
locity, i.e. pushed by others, stepping on others’ feet or
stepping with an unexpected drop, a pedestrian may fall
down and a stampede accident may follow. Furthermore,
pedestrians adjust their velocity by both step length and
frequency. The walking behavior can be affected if one of
them is influenced by external environment, e.g. rhythm
[18]. Finally, volume exclusion of a pedestrian changes
during a step because of the stretching of legs. This could
be one reason for the lock-step phenomenon [19]: pedes-
trians squeeze the front leg into the hole left by the leg of
the preceding pedestrian. For the same reason, pedestri-
ans can still move even when there is no spare space for
bodies while there is still room for feet. The former two
features are also noticed by the works related to the opti-
mal step model (OSM) [20, 21], in which pedestrians are
simulated by periodically moving particles. Pedestrian
movement in the OSM is natural because they have sim-
ilar movement cycle and step length adaption behavior
as humans. However, the model is rather simple since
it does not consider the space change caused by bipedal
movement during one step cycle.

To take these characteristics into consideration, a
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biped model is developed in this paper to simulate pedes-
trians by natural movements of two feet. A schematic of
the model will be introduced in Section II. Two parts in
the schematic, the stepping simulator and the step level
velocity adjustment will be developed in Secs. III and
IV respectively. Then results of the model are compared
with experimental results in Section V. Finally, the con-
clusion is given in Sec. VI.

II. MODEL SCHEMATIC

In our model, the spatial state of pedestrian i at time
t is denoted by the heels and toes of both feet:

Pi(t) = [Lh
i (t), Lt

i(t), R
h
i (t), Rt

i(t)], (1)

where Lh
i = [x, y]T and Lt

i = [x
′
, y

′
]T are the coordinates

of the heel and toe of the left foot. Based on Pi, the
physical space (si) of a pedestrian is defined as the poly-
gon whose vertexes are the four points. Head position is
the middle point of the two heels. Headway distance (di)
is the distance between head positions of two adjacent
pedestrians (see Fig. 1(a)).
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Fig. 1. Spatial structure of walking. (a)Definitions of
spatial state(Pi), head position and physical space (si).
(b)Definition of step width (w), step length (l) and foot

open angle (θ).

According to Boulic et al. [22], a pedestrian has two
states while walking: the duration of double support
(both feet in contact with the ground) and the duration
of balance (one foot in contact with the ground). In our
model, we assume that one foot leaves the ground and
the other foot touches the ground happen at the same
time. That means that, during each step, there is only
one moment at which both feet are on the ground. We
refer to this moment as the stand moment. The n-th
stand moment is labeled Tn. Based on this assumption,
the temporal structure of the model is shown in Fig. 2,
in which time is discretized by the time step (δ). Stand
moments are rounded to the nearest time step. The time
between Tn and Tn+1 is the duration of a step (∆n+1).
Except for stand moments, all the other time steps are
balance moments.

Then spatial states of a step can be visualized in Fig. 1
(b). The black arrows are the feet at stand moments and
the black points are the heels at balance moments. Ac-
cording to the definition of a stand moment, the black ar-
rows are also footprints. To describe the relative position

i:

i− 1:

Tn Tn+1 Tn+2

Tn Tn+1 Tn+2

Tn+3

Tn+3δ

︸︷︷︸

∆n+1

t

Fig. 2. Temporal structure of walking of the model.

relationship between footprints, three spatial quantities
are defined. Supposing pedestrians are walking along the
x-axis in the single lane scenario discussed in this paper,
the step length (ln+1) of the (n+1)-th step is the distance
between heels along the x-axis, step width (wn+1) is the
distance between heels along the y-axis, and foot open
angle (θn+1) is the angle between the front footprint and
the x-axis.

The main idea of the model is that pedestrians plan
their movement by physical steps rather than by time
steps. In the biped model, velocity is only planned when
a step is finished (stand moments). While at balance
moments, pedestrians just execute the planned step. If
two adjacent pedestrians finish a step at the same time
(t = Tn+3 for both pedestrians in Fig. 2), the front
pedestrian (referred to as “leader”) will decide at first.

A schematic of the model is shown in Fig. 3, in which
time increases in nature with the time step (t = t + δ).
When a step of a pedestrian is finished (t = Tn), ve-
locity of the next step (vn+1) will be planned by the
three updating processes proposed in Section IV. With
vn+1 we can solve the spatial states of the next step
(Pi(t), t ∈ (Tn, Tn+1]) by the stepping simulator devel-
oped in Section III. Note that the “Stepping simulator”
is called by“Collision avoidance” in the process of veloc-
ity updating, as a result Section III (Stepping simulator)
will be introduced before Section IV (Updating of veloc-
ity).

III. STEPPING SIMULATOR

A. Generation of spatial state at stand moment

According to the temporal structure shown in Fig. 2,
time of the new stand moment is:

Tn+1 = Tn + ∆n+1. (2)

As the spatial structure shown in Fig 1 (b), spatial state
of the new stand moment is 1:

Pi(Tn+1) = [Lh
i (Tn), Lt

i(Tn), Rh
i (Tn+1), Rt

i(Tn+1)], (3)

1 Pi(Tn+1) can be solved in a similar manner when the left foot is
stepping forward from Tn to Tn+1.
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Fig. 3. Schematic of the biped model. The stand
moment simulator refers to the generation of spatial

state at stand moment described in Section III A. The
balance moment simulator refers to the generation of a

spatial state at the balance moment described in
Section III B.

where

Rh
i (Tn+1) = Lh

i (Tn) + [ln+1,−wn+1]T ,

Rt
i(Tn+1) = Rh

i (Tn+1) + f [cos θn+1,− sin θn+1]T .
(4)

f is the foot length of the pedestrian. According to
Ilayperuma et. al [23], there is the following linear de-
pendence between f and human’s height (H):

f(H) = (H − 0.79)/3.59. (5)

In Eqs. (3) and (4) we see that the left foot is static
from Tn to Tn+1. The heel position of the right foot
Rh

i (Tn+1) is calculated by ln+1 and wn+1 at first, then the
toe position is solved by Rh

i (Tn+1) and θn+1. To summa-
rize, ∆, l, w and θ are needed to generate the movement
of a new stand moment. A global human walking model
was proposed by Boulic et. al [22], in which the values of
ln+1, wn+1 and θn+1 are functions of the velocity (vn+1)
of a step2:

l(v)/g = 0.637
√
v/g, (6)

w(v)/g = 0.02v/g + 0.05, (7)

θ(v) = −1.4v/g + 8.5, (8)

where g is the thigh height. According to Kreighbaum et
al. [24] g is about 53% of a pedestrian’s height:

g(H) = 0.53H. (9)

2 For simplicity, the subscripts of ∆, l, w, θ and v are omitted in
the following discussion.

In the single lane scenario, the step duration (∆) is de-
termined when l and v are known:

∆(v) = l(v)/v = 0.637
√
g/v (10)

In Ref. [22], the applicable velocity of Eqs. (6)-(10) is
from 0.6 m/s to 2.0 m/s when g = 1 m. Therefore these
functions can not be applied in low velocity situations
(such as v = 0.17 m/s when ρ=1.97 ped/m [19]). To val-
idate these functions, especially in low velocity situation,
controlled experiments were conducted. The schematic
of the experimental set up is shown in Fig. 4 (a).

9m

v

Robot Pedestrian

Scan range: 0.1-30m, 180◦

Laser scanner

(a)
(b)

Rh of a stand moment

Track of the foot

Leg-like clusters

Walls

Fig. 4. (a) Schematic of experiments. (b) Results
extracted from one experiment.

In each experiment, a pedestrian kept following a
straight moving robot for about 9m at a constant ve-
locity. Velocities of the robot were 0.2, 0.4, 0.6, 0.8, 1.0
and 1.2 m/s respectively. Finally, the pedestrian walked
at a normal velocity without following the robot. The
experiment at each velocity was repeated four times. Six
male and four female university students took part in the
experiments. A laser range scanner (type: HOKUYO
UTM-30LX) was set at a height of 0.15 m to record the
ankle movement. With the method described in Ap-
pendix A, the heel positions and the time of all stand
moments could be extracted (see 4 (b)). With these data,
Eqs. (6), (7) can be validated. The results are shown in
Fig. 5.
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Fig. 5. Relationships obtained from robot following
experiments. (a) Normalized step length (l/g) as a

function of normalized velocity (v/g). (b) Normalized
step width (w/g) as a function of normalized velocity

(v/g).
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According to Fig. 5 , Eq. (6) has a good agreement
with the experiments, while Eq. (7) shows a trend op-
posite that of the experiments. We refit the relation be-
tween w and v as follows:

w(v)/g = −0.04v/g + 0.17. (11)

The above relations are applicable when v > 0.2 m/s.
Nevertheless in high density situations, some extreme
slow steps may be adopted by pedestrians. According
to Ref. [25], pedestrians continue to sway and shift their
body weight from one leg to the other when the density
is too high to force them almost to stop. Comparing to
the dependence between velocity and step length, the in-
crease in step duration is much more gradual with the
decrease of velocity, and the largest duration of a step is
about 1.2 s. But with Eq. (10), a step has a duration
of 6.37 s when an extreme low velocity (v = 0.01 m/s) is
planned. It is much larger than the maximum duration in
experiments. To make the simulator more realistic at low
velocity, we controlled the duration of a step by setting
a cutoff time C for ∆:

∆(v) =

{
0.637

√
g/v 0.637

√
g/v ≤ C,

C 0.637
√
g/v > C.

(12)

Then the step-length function Eq. (6) should be adjusted
accordingly to guarantee the velocity after the cut-off:

l(v) = v∆(v). (13)

Based on the discussion above, the time and spatial
state of the next stand moment can be generated by the
velocity with a wide range from 0 to about 2 m/s. Equa-
tions (8), (11) and (12) should first be computed to ob-
tain θ, w and ∆, then we calculate l with ∆ obtained
from Eq. (13). Finally, we solve the new stand moment
by using Eqs. (2)-(4).

B. Generation of spatial state at balance moment

At balance moments, the space occupied by a pedes-
trian is changing because of the swing of the foot. Hence
spatial states at balance moments are necessary in the
collision avoidance process which is introduced in Sec-
tion IV B. The uniform accelerating model in Ref. [26]
is adopted to solve for the heel position at balance mo-
ments, in which the swing foot first accelerates uniformly
and then decelerates uniformly between two stand mo-
ments. In addition, we suppose that the foot opening
angle changes uniformly at the same time. Based on the
two assumptions, spatial states of the feet at balance mo-
ments between Pi(t) and Pi(Tn+1) in Fig. 1 (b) can be
solved by 3:

3 By analogy it can be solved in a similar manner when the left
foot is stepping forward.

Pi(t) = [Lh
i (Tn), Lt

i(Tn), Rh
i (t), Rt

i(t)], t ∈ (Tn, Tn+1),
(14)

where

Rh
i (t) =





Rh
i (Tn) + 2t′2(Rh

i (Tn+1)−Rh
i (Tn)),

0 < t′ ≤ 1/2

Rh
i (Tn+1)− 2(1− t′)2(Rh

i (Tn+1)−Rh
i (Tn)),

1/2 < t′ ≤ 1

t′ = (t− Tn)/(Tn+1 − Tn)

Rt
i(t) = Rh

i (t) + f [cos θ′,− sin θ′]

θ′ = θn + (θn+1 − θn)t′.
(15)

IV. UPDATING OF VELOCITY

With the stepping simulator developed in Section III,
the foot movement of a new step (Pi(t), t ∈ (Tn, Tn+1])
can be simulated with a given velocity vn+1. In this
section, we discuss how to update vn+1 according to the
bipedal movements.

A. Optimal velocity

At first, a pedestrian makes a temporary decision con-
sidering the headway distance (d), which is called an
optimal velocity process. In the experiment presented
by Jelić et al [27], the instantaneous individual measure-
ments were adopted: Measuring the instantaneous ve-
locity and the headway distance at each frame. When a
pedestrian in our model makes a decision, she faces a sim-
ilar situation with the instantaneous measurement: De-
termining the velocity of next step by the instantaneous
headway distance. Instantaneous velocity as a function
of headway distance in Ref. [27] is shown in Fig. 6.

In Ref. [27] the authors distinguished the dependence
into three regimes: a free regime (d > 3 m), a weakly
constrained regime (1.1 m < d ≤ 3 m) and a strongly
constrained regime (d ≤ 1.1 m). Therefore, we fit the
relation with a piecewise function:

van+1(d) =





tanh(2.4 ∗ (d− 0.85)/2 + 0.5) ∗ 1.16,

d ≤ 1.1

F (0.53d− 0.58)− 0.47d+ 1.41,

1.1 < d ≤ 3

F, d > 3,

(16)
where F is the free walking velocity of the pedestrian.
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Fig. 6. Velocity as a function of headway distance.
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lines are the fitting results.

B. Collision avoidance

According to Ref. [3], an optimal velocity function
based model with a high updating frequency (100 Hz in
Ref. [3]) is collision free if velocity is 0 m/s when the
minimal spacing in front is 0 m. However, according
to the definition of headway distance, d in Eq. (16) is
larger than the minimal space, i.e. the distance between
the backward heel of the leader and forward toe of the
follower. Besides, in the biped model the updating fre-
quency is uncertain, and could be quite low when a slow
step is adopted (0.83 Hz when ∆ = 1.2 s). Furthermore
the space of a pedestrian is dynamic for all time steps in
the biped model, which also increases the possibility of
collision. As a result, with the velocity obtained by Eq.
(16), a collision in the next step can not be excluded.
Collision avoidance is necessary after the optimal veloc-
ity process.

In Section II we describe the 2D space occupied by a
pedestrian as a physical space s (see Fig. 1(a)). However,
if we use s to conduct collision avoidance directly, pedes-
trians will be aggressive: Stepping close to the leader’s
feet as long as no collision happens. If the leader decel-
erates during this period, the follower may step on the
leader’s foot. An extension coefficient E is introduced
to guarantee a safety margin. Space for collision avoid-
ance is obtained by extending s along the x and the y
axis by E. We outline the collision avoidance process
in Algorithm 1, where we see that the spatial states of
the next step of pedestrian i are first generated by the
stepping simulator with the result of the optimal velocity
function. Next, a while loop is conducted to find a ve-
locity which can pass the collision test. The collision test
process is shown in Fig. 7, in which the model checks if
the two polygons of the follower and the leader overlap
during the oncoming step (from Tn to Tn+1) with the
method described in Appendix B. If a collision happens
(t = Tn + 8δ in Fig. 7(a)), the velocity is rejected in

the test. We reduce the velocity by 0.05 m/s each time
until we obtain a velocity that can pass the test. In Fig.
7(b), no collision happens when the velocity is reduced
to 0.27 m/s, which is the result of the collision avoidance
process: vbn+1 = 0.27 m/s.

Algorithm 1 Collision avoidance process

Input: spatial states of the leader Pi−1, result of the optimal
velocity van+1

Output: result of collision avoidance vbn+1

1: function CollisionAvoidance(Pi−1, van+1)
2: vbn+1 ← van+1

3: Pi ← SteppingSimulator(vbn+1)
4: while CollisionTest(Pi, Pi−1)==Failed do
5: vbn+1 ← vbn+1 - 0.05
6: Pi ← SteppingSimulator(vbn+1)
7: end while
8: return vbn+1

9: end function

C. Inertia constraint

Due to inertia, there is a limitation of velocity change
(L) between two steps. We estimate the value of L by free
accelerated walking. For example, when L = 0.4 m/s,
F = 1.29 m/s four steps are needed to accelerate to F , i.e.
v1 = 0.4 m/s, v2 = 0.8 m/s, v3 = 1.2 m/s, v4 = 1.29 m/s.
The trajectory of the head position within the four steps
is the free acceleration trajectory of the the biped model.
According to the experimental study in Ref. [28], the
acceleration process can be described as a nonuniformly
accelerating movement. The acceleration at a specific v
is a = (F − v)/τ, where τ = 0.5 s is the relaxation time.
With the function, we can obtain the free acceleration
trajectory of experiment. Five trajectories are simulated
in the biped model by setting L = 0.4, 0.6, 0.8, 1.0 and
1.2 m/s respectively. By comparing the length of the five
trajectories with the length of experiment trajectory, we
find that the deviation of length is minimal when L = 0.8
m/s. As a result, 0.8 m/s is the value of L in the Biped
Model. Restricting the result of collision avoidance by L
is the final velocity of the new step:

vn+1 = vcn+1 =





vn − L vbn+1 − vn < −L
vbn+1 |vbn+1 − vn| ≤ L
vn + L vbn+1 − vn > L.

(17)

V. RESULTS

With the stepping simulator and the velocity updat-
ing method, biped movement can be simulated in the
single lane scenario. In this section, we evaluate the
model by comparing the simulation results with experi-
ments. Descriptions and values of the parameters used
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Tn Tn + δ ..... Tn + 8δ

(a):vn+1=0.32m/s, failure

Tn Tn + δ ..... Tn+1

(b):vn+1=0.27m/s, success

Fig. 7. Collision test process. Black core is s, filled and empty red polygons are the extended space of the follower
and the leader respectively. (a) When vn+1 = 0.32 m/s, collision happens at t = Tn + 8δ. (b) When vn+1 = 0.27

m/s, no collision happens in the new step.

in the model are listed in Table I. To simulate the differ-
ences between individuals, the parameters are normally
distributed. The values of C, F and L are already spec-
ified in Secs. III and IV. The value of E is discussed
later. Except for the five parameters listed in the table,
all other definitions are dependent variables.

TABLE I: Descriptions and values of parameters in
Biped Model. N(µ, σ) indicates that the parameter is
normally distributed in a crowd with mean value (µ)

and standard deviation (σ).

Parameter Description Value Unit

H height of pedestrian N(1.70, 0.05) m

C max duration of a step N(1.20, 0.05) -

F free walking velocity N(1.29, 0.05) m/s

E extension coefficient of s To be determined -

L limitation of velocity change N(0.80, 0.03) m/s

The scenario of the following simulations consists of
uniformly distributed pedestrians walking in a 10 m cor-
ridor with periodic boundary conditions. The time step δ
is 0.04 s. All pedestrians stand still at the beginning and
a pedestrian is chosen randomly to make the first step
with a random foot. Others make the first step by try-
ing with two feet, and choosing the foot to make velocity
of the first step larger. If the velocities are the same in
the two trails, the foot to conduct the first step is chosen
randomly. Each simulation lasts 4000 time steps (160 s).
Nineteen simulations with densities ranging from 0.2 to
2.0 ped/m are conducted five times each.

A. Fundamental diagram

During the simulation we find that the velocity is not
stable at the beginning of a simulation. Hence the av-
erage velocity of each simulation is computed after 80 s.
The average value (µ) and standard deviation (σ) of the
five repeated simulations at each density are compared

in Fig. 8 with the experimental results of Ref. [27] .

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
 [ped/m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

v 
[m

/s
]

Extra simulations2.1
3.0

Exp in Ref. [27]
E = 1.2±0.03
E = 1.4±0.03

Fig. 8. Fundamental diagram of experiments and
simulations. The points are µ of velocities in five

repeated simulations, and the vertical lines are σ of
velocities.

From the figure we see that velocities with different E
are nearly the same when density is < 1.0 ped/m. How-
ever, when density grows, E = 1.2±0.03 leads to a better
fit. Velocities with E = 1.4 ± 0.03 in the simulation are
always less than in experiments. This can be explained
by the fact that, with larger E, pedestrians need a larger
walking space. Considering the good agreements between
experiments and simulations, 1.2±0.03 is set as the value
of E. Benefiting from the accurate description of space,
pedestrian movement can be simulated at quite a high
density in the biped model. Extra simulations are con-
ducted with E = 1.2±0.03 to test the maximal applicable
density of the model. As the black points shown in left
bottom of Fig. 8, the average velocity declines gradu-
ally and keeps a nonzero value until 3.0 ped/m. In most
particle models, the diameter of a pedestrian is usually
between 0.4m and 0.5m. This means that, at this density,
pedestrians already overlap with each other. Addition-
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ally, we find that there is a fast decline region (density
from 1.0 to 1.2 ped/m) in both experiments and simula-
tions.

B. Stop-and-go wave

Stop-and-go waves have been observed in a lot of
pedestrian dynamic experiments [25, 29, 30]. By analyz-
ing these experiments, some researchers find that there is
a critical density for this phenomenon in the single-lane
scenario. In data of German soldiers [30], stopping was
first observed during runs with 45 pedestrians in a 26m
corridor (1.73 ped/m). In French experiments [25], stop-
and-go waves arise when the density is larger than 1.20
ped/m. To investigate the ability of the biped model to
reproduce realistic stop-and-go waves, pedestrians’ posi-
tions as a function of time in three simulations are shown
in Fig. 9. At the same time, µ and σ of all pedestrians’
velocities are also recorded every two seconds.

As shown in Fig. 9, stable stop-and-go waves appear
when density ≥ 1.1 ped/m. The critical density in the
simulation is close to that in Ref. [25]. Furthermore, we
observe that small fluctuations are magnified over time
at the beginning. At the same time, µ decreases and σ
increases. After a period of time, a stable jam emerges,
and both µ and σ of velocity become stable. Generally
speaking, shorter time is needed to reach the stable state
in higher density. Then the findings mentioned in Sec-
tion V A can be explained: The formation of stop-and-go
waves give rise to the fast decline zone.

C. Lock-step phenomenon

The lock-step phenomenon was noticed in Ref. [19],
which can be described as pedestrians squeezing the front
leg at the gap left by the leg of the leader for the full use of
space at high density. This phenomenon indicates that
the space a pedestrian takes up changes not only with
velocity, but also with time within a step, and pedestrians
can optimize their use of the space. To investigate if this
phenomenon can be reproduced in our model, we use a
quantitative method proposed in Ref. [25]. Φ is defined
in this method to measure the synchronization among
pedestrians:

Φ = 2π(ti − ti−1)/Γi−1, (18)

where ti is the start time of the follower’s walking cy-
cle (a walking cycle contains two steps), and Γi−1 is the
duration of the leader’s walking cycle. According to the
definition, if Φ = 0, the two adjacent pedestrians take the
same foot at the same time (synchronization). In Ref.
[25], Φ was grouped by instantaneous density (ρ, inverse
of the instantaneous headway distance). They observed
that at large densities (beyond 1.25 ped/m), there was

a peak around the phase Φ = 0, which indicated the ex-
istence of the lock-step phenomenon (see Fig. 10, black
dots). By using the same measurement, the result of
simulations are also shown in Fig. 10.

According to the figure, a peak at Φ = 0 only ap-
pears when ρ > 1.5 ped/m in simulation. With increas-
ing simulation time, the distributions of Φ are stable in
Fig. 10(a), while the peak becomes lower in Fig. 10(b).
This means that, in the biped model, the lock-step phe-
nomenon only appears when ρ > 1.5 ped/m and the phe-
nomenon disappears gradually with increasing simulation
time. The fading of lock steps in a simulation can also be
observed in Fig. 11, in which the first steps of most pedes-
trians are lock steps. As the simulation time increases,
less lock steps are observed. This can be explained by the
fact that, in the biped model, step level interactions are
simulated by collision avoidance, and collisions seldom
happen when ρ ≤ 1.5 ped/m. As time passes, stop-and-
go waves arise, which affects the lock-step mechanism.
Pedestrians in the model are unable to adjust their step
frequency to catch the leader’s step while leaving a jam.
As a result, the peak at Φ = 0 becomes lower.

VI. DISCUSSION AND OUTLOOK

Modeling of pedestrian movement was divided by a
top-down approach into strategic, tactical and opera-
tional levels [31]. Seitz et. al [21] pointed out that an
inaccurate model of lower level corrupted the results on
higher levels. In this paper we provide a realistic model
at the underlying level. To guarantee the accuracy, most
processes in the biped model are based on experiments
data: Generating of stand moment movement is based
on the empirical equations in Ref. [22], studies of step
frequency in Ref. [25], and our robot following experi-
ments. The swing movement model [26] is also derived
from experiments. Updating of velocity is based on the
instantaneous fundamental diagram in Ref. [27] and the
accelerating studies in Ref. [28].

With these experimental data, natural foot movements
are simulated and the characteristics mentioned in Sec. I
are included: Pedestrian movement is periodic, pedestri-
ans adjust both step frequency and step length, physical
space varies during a step cycle. With the collision avoid-
ance process, the possibility of overlap is low even when
pedestrians make decisions at low frequency. If overlap
still happens after the collision avoidance, that indicates
that the leader may slow down sharply. The follower can
not react in time, and finally step on the leader’s heel.
That could induce a tumble during evacuation. Mean-
while, pedestrians in the biped model can move at quite
high densities (3 ped/m described in Sec. V A) as long
as there is space for a foot.

Although several phenomena has been reproduced,
some discrepancies with experiments can be observed: no
lock-steps appear when the density is between 1.25 and
1.50 ped/m, and stop-and-go waves arise earlier than that
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Fig. 9. Position, µ and σ of velocity at different densities. (a) 1.0 ped/m. (b) 1.1 ped/m. (c) 1.3 ped/m.
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Fig. 10. Normalized distributions of Φ. (a)
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Fig. 11. Evolution of lock-step when density=2.0
ped/m. Filled polygons are lock-steps and empty

polygons are non-lock steps.

observed in some experiments. A possible explanation is
that pedestrians in this density regime may have other
step level considerations, e.g. the adjustment of step fre-
quency according to the phase of the leader, which could
have a deep impact on the lock-step phenomenon and
stop-and-go waves. This consideration can be clarified
through further experiments in future works. Further-
more, we strive to generalize the biped model to 2D sce-
narios.
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APPENDIX A: EXTRACTING BOTTOM POINTS
FROM LASER RADAR DATA

In each scan of the laser scanner, the raw data of both
moving objects (e.g. pedestrians) and static objects (e.g.
walls) can be collected (see blue points in Fig. 3 (b). At
first, the static points are removed based on the distance
histogram at each scanning angle [32]. Second, moving
points are clustered: If the distance between two neigh-
boring sample points is less than the threshold (5 cm),
they will be classified as the same cluster. If the maxi-
mal distance between points in the cluster is similar to
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the diameter of the leg (10-18 cm), it will be regarded as a
leg-like cluster. Centers of all leg-like clusters during the
whole experiment are demonstrated by black points in
the figure, according to which the black points are dense
when the leg is during the support duration. Computing
the local density around each black point, the point with
the maximal local density is marked by the red crosses,
which is also the approximate position of the heel.

APPENDIX B: DETECTING OVERLAP
BETWEEN TWO POLYGONS

If any vertex in either polygon is inside the other one,
the two polygons overlap. The judgment of whether a

point is in a polygon is based on Franklin’s PNPLOY
algorithm [33]: Making a ray from the point to any di-
rection, if the number of intersections between the ray
and the edges of the polygon is even, the point is inside
the polygon. Otherwise it is outside.

[1] D. Helbing and P. Molnar, Physical review E 51, 4282
(1995).

[2] W. Yu, R. Chen, L. Dong, and S. Dai, Physical Review
E 72, 026112 (2005).

[3] A. Tordeux, M. Chraibi, and A. Seyfried, in Traffic and
Granular Flow’15 (Springer, Cham, 2016) pp. 225–232.

[4] Y. Xiao, Z. Gao, Y. Qu, and X. Li, Transportation re-
search part C: emerging technologies 68, 566 (2016).

[5] J. Ma, W.-g. Song, J. Zhang, S.-m. Lo, and G.-x. Liao,
Physica A: Statistical Mechanics and its Applications
389, 2101 (2010).

[6] V. J. Blue and J. L. Adler, Transportation Research Part
B: Methodological 35, 293 (2001).

[7] K. Nishinari, A. Kirchner, A. Namazi, and A. Schad-
schneider, IEICE Transactions on information and sys-
tems 87, 726 (2004).

[8] B. Leng, J. Wang, W. Zhao, and Z. Xiong, Physica
A: Statistical Mechanics and its Applications 402, 119
(2014).

[9] M. Davidich, F. Geiss, H. G. Mayer, A. Pfaffinger, and
C. Royer, Transportation Research Part C: Emerging
Technologies 37, 210 (2013).

[10] W. Song, X. Xu, B.-H. Wang, and S. Ni, Physica A: Sta-
tistical Mechanics and its Applications 363, 492 (2006).

[11] S. Cao, W. Song, W. Lv, and Z. Fang, Physica A: Sta-
tistical Mechanics and its Applications 436, 45 (2015).

[12] P. A. Langston, R. Masling, and B. N. Asmar, Safety
Science 44, 395 (2006).

[13] R. Hidalgo, D. Parisi, and I. Zuriguel, Physical Review
E 95, 042319 (2017).

[14] F. Alonso-Marroquin, J. Busch, C. Chiew, C. Lozano,
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[21] M. J. Seitz and G. Köster, Physical Review E 86, 046108
(2012).

[22] R. Boulic, N. M. Thalmann, and D. Thalmann, The
visual computer 6, 344 (1990).

[23] I. Ilayperuma, B. Nanayakkara, and K. Palahepitiya,
Galle Medical Journal 13, 6 (2008).

[24] E. Kreighbaum and K. Barthels, “Biomechanics-a quali-
tative approach for studying human movement,” (1996).
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Physical Review E 85, 036111 (2012).
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