000857114 001__ 857114
000857114 005__ 20230310131344.0
000857114 0247_ $$2doi$$a10.1002/nla.2208
000857114 0247_ $$2ISSN$$a1070-5325
000857114 0247_ $$2ISSN$$a1099-1506
000857114 0247_ $$2Handle$$a2128/19998
000857114 0247_ $$2WOS$$aWOS:000449497500001
000857114 037__ $$aFZJ-2018-06359
000857114 082__ $$a510
000857114 1001_ $$0P:(DE-HGF)0$$aBolten, Matthias$$b0
000857114 245__ $$aAsymptotic convergence of the parallel full approximation scheme in space and time for linear problems
000857114 260__ $$aNew York, NY [u.a.]$$bWiley$$c2018
000857114 3367_ $$2DRIVER$$aarticle
000857114 3367_ $$2DataCite$$aOutput Types/Journal article
000857114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542099873_11588
000857114 3367_ $$2BibTeX$$aARTICLE
000857114 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857114 3367_ $$00$$2EndNote$$aJournal Article
000857114 520__ $$aFor time‐dependent partial differential equations, parallel‐in‐time integration using the “parallel full approximation scheme in space and time” (PFASST) is a promising way to accelerate existing space‐parallel approaches beyond their scaling limits. Inspired by the classical Parareal method and multigrid ideas, PFASST allows to integrate multiple time steps simultaneously using a space–time hierarchy of spectral deferred correction sweeps. While many use cases and benchmarks exist, a solid and reliable mathematical foundation is still missing. Very recently, however, PFASST for linear problems has been identified as a multigrid method. In this paper, we will use this multigrid formulation and, in particular, PFASST's iteration matrix to show that, in the nonstiff and stiff limit, PFASST indeed is a convergent iterative method. We will provide upper bounds for the spectral radius of the iteration matrix and investigate how PFASST performs for increasing numbers of parallel time steps. Finally, we will demonstrate that the results obtained here indeed relate to actual PFASST runs.
000857114 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000857114 536__ $$0G:(GEPRIS)450829162$$aDFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)$$c450829162$$x1
000857114 588__ $$aDataset connected to CrossRef
000857114 7001_ $$0P:(DE-Juel1)157768$$aMoser, Dieter$$b1
000857114 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b2$$eCorresponding author
000857114 773__ $$0PERI:(DE-600)2012602-5$$a10.1002/nla.2208$$gVol. 25, no. 6, p. e2208 -$$n6$$pe2208 -$$tNumerical linear algebra with applications$$v25$$x1070-5325$$y2018
000857114 8564_ $$uhttps://juser.fz-juelich.de/record/857114/files/paper.pdf$$yPublished on 2018-08-14. Available in OpenAccess from 2019-08-14.
000857114 8564_ $$uhttps://juser.fz-juelich.de/record/857114/files/paper.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-08-14. Available in OpenAccess from 2019-08-14.
000857114 909CO $$ooai:juser.fz-juelich.de:857114$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000857114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157768$$aForschungszentrum Jülich$$b1$$kFZJ
000857114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich$$b2$$kFZJ
000857114 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000857114 9141_ $$y2018
000857114 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857114 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000857114 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUMER LINEAR ALGEBR : 2017
000857114 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857114 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857114 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857114 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857114 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857114 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000857114 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857114 920__ $$lyes
000857114 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000857114 980__ $$ajournal
000857114 980__ $$aVDB
000857114 980__ $$aUNRESTRICTED
000857114 980__ $$aI:(DE-Juel1)JSC-20090406
000857114 9801_ $$aFullTexts