001     857114
005     20230310131344.0
024 7 _ |a 10.1002/nla.2208
|2 doi
024 7 _ |a 1070-5325
|2 ISSN
024 7 _ |a 1099-1506
|2 ISSN
024 7 _ |a 2128/19998
|2 Handle
024 7 _ |a WOS:000449497500001
|2 WOS
037 _ _ |a FZJ-2018-06359
082 _ _ |a 510
100 1 _ |a Bolten, Matthias
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Asymptotic convergence of the parallel full approximation scheme in space and time for linear problems
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542099873_11588
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For time‐dependent partial differential equations, parallel‐in‐time integration using the “parallel full approximation scheme in space and time” (PFASST) is a promising way to accelerate existing space‐parallel approaches beyond their scaling limits. Inspired by the classical Parareal method and multigrid ideas, PFASST allows to integrate multiple time steps simultaneously using a space–time hierarchy of spectral deferred correction sweeps. While many use cases and benchmarks exist, a solid and reliable mathematical foundation is still missing. Very recently, however, PFASST for linear problems has been identified as a multigrid method. In this paper, we will use this multigrid formulation and, in particular, PFASST's iteration matrix to show that, in the nonstiff and stiff limit, PFASST indeed is a convergent iterative method. We will provide upper bounds for the spectral radius of the iteration matrix and investigate how PFASST performs for increasing numbers of parallel time steps. Finally, we will demonstrate that the results obtained here indeed relate to actual PFASST runs.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
536 _ _ |a DFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)
|0 G:(GEPRIS)450829162
|c 450829162
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Moser, Dieter
|0 P:(DE-Juel1)157768
|b 1
700 1 _ |a Speck, Robert
|0 P:(DE-Juel1)132268
|b 2
|e Corresponding author
773 _ _ |a 10.1002/nla.2208
|g Vol. 25, no. 6, p. e2208 -
|0 PERI:(DE-600)2012602-5
|n 6
|p e2208 -
|t Numerical linear algebra with applications
|v 25
|y 2018
|x 1070-5325
856 4 _ |y Published on 2018-08-14. Available in OpenAccess from 2019-08-14.
|u https://juser.fz-juelich.de/record/857114/files/paper.pdf
856 4 _ |y Published on 2018-08-14. Available in OpenAccess from 2019-08-14.
|x pdfa
|u https://juser.fz-juelich.de/record/857114/files/paper.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:857114
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157768
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132268
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUMER LINEAR ALGEBR : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21