000857115 001__ 857115
000857115 005__ 20210129235457.0
000857115 0247_ $$2doi$$a10.1080/00036811.2018.1504028
000857115 0247_ $$2ISSN$$a0003-6811
000857115 0247_ $$2ISSN$$a1026-7360
000857115 0247_ $$2ISSN$$a1563-504X
000857115 0247_ $$2Handle$$a2128/23862
000857115 0247_ $$2WOS$$aWOS:000507308100009
000857115 037__ $$aFZJ-2018-06360
000857115 041__ $$aEnglish
000857115 082__ $$a510
000857115 1001_ $$0P:(DE-HGF)0$$aHarris, I.$$b0$$eCorresponding author
000857115 245__ $$aThe inverse scattering problem for a conductive boundary condition and transmission eigenvalues
000857115 260__ $$aLondon$$bTaylor & Francis Group$$c2020
000857115 3367_ $$2DRIVER$$aarticle
000857115 3367_ $$2DataCite$$aOutput Types/Journal article
000857115 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579081203_32109
000857115 3367_ $$2BibTeX$$aARTICLE
000857115 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857115 3367_ $$00$$2EndNote$$aJournal Article
000857115 520__ $$aIn this paper, we consider the inverse scattering problem associated with an inhomogeneous media with a conductive boundary. In particular, we are interested in two problems that arise from this inverse problem: the inverse conductivity problem and the corresponding interior transmission eigenvalue problem. The inverse conductivity problem is to recover the conductive boundary parameter from the measured scattering data. We prove that the measured scatted data uniquely determine the conductivity parameter as well as describe a direct algorithm to recover the conductivity. The interior transmission eigenvalue problem is an eigenvalue problem associated with the inverse scattering of such materials. We investigate the convergence of the eigenvalues as the conductivity parameter tends to zero as well as prove existence and discreteness for the case of an absorbing media. Lastly, several numerical and analytical results support the theory and we show that the inside–outside duality method can be used to reconstruct the interior conductive eigenvalues.
000857115 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000857115 588__ $$aDataset connected to CrossRef
000857115 7001_ $$0P:(DE-Juel1)169421$$aKleefeld, A.$$b1
000857115 773__ $$0PERI:(DE-600)1465373-4$$a10.1080/00036811.2018.1504028$$gp. 1 - 22$$n3$$p508-529$$tApplicable analysis$$v99$$x1563-504X$$y2020
000857115 8564_ $$uhttps://juser.fz-juelich.de/record/857115/files/1608.07560.pdf$$yOpenAccess
000857115 8564_ $$uhttps://juser.fz-juelich.de/record/857115/files/1608.07560.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857115 909CO $$ooai:juser.fz-juelich.de:857115$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000857115 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b1$$kFZJ
000857115 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000857115 9141_ $$y2020
000857115 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857115 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857115 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ANAL : 2017
000857115 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857115 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857115 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857115 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857115 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857115 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857115 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857115 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000857115 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857115 920__ $$lyes
000857115 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000857115 980__ $$ajournal
000857115 980__ $$aVDB
000857115 980__ $$aUNRESTRICTED
000857115 980__ $$aI:(DE-Juel1)JSC-20090406
000857115 9801_ $$aFullTexts