000857128 001__ 857128
000857128 005__ 20210129235501.0
000857128 0247_ $$2doi$$a10.1016/j.apgeochem.2018.08.010
000857128 0247_ $$2ISSN$$a0883-2927
000857128 0247_ $$2ISSN$$a1872-9134
000857128 0247_ $$2WOS$$aWOS:000446455900017
000857128 037__ $$aFZJ-2018-06372
000857128 082__ $$a550
000857128 1001_ $$0P:(DE-Juel1)166439$$aWolff, Jan$$b0$$eCorresponding author$$ufzj
000857128 245__ $$aRapid wet chemical synthesis for 33P-labelled hydroxyapatite – An approach for environmental research
000857128 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000857128 3367_ $$2DRIVER$$aarticle
000857128 3367_ $$2DataCite$$aOutput Types/Journal article
000857128 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542112399_11585
000857128 3367_ $$2BibTeX$$aARTICLE
000857128 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857128 3367_ $$00$$2EndNote$$aJournal Article
000857128 520__ $$aApatite is the principal primary phosphorus (P) source in the environment; yet there is no consensus on how it can be synthesized for controlled microcosm studies, particularly not in labelled form. Here, we present a methodology that allows for the production of stoichiometric 33Phosphorus (33P)-labelled hydroxyapatite powders produced by a simple and fast wet chemical procedure, with different precursor compounds and at different reaction (25, 40, 60 and 80 °C) and calcination (100 and 200 °C) temperatures. The resulting morphological structures were analysed by Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that rapid synthesis of hydroxyapatite is successful using 33P-labelled di-ammonium hydrogen phosphate and calcium nitrate with a Ca/P ratio of 1.67 in less than 30 h. Crystallinity increased with increasing reaction temperatures. Solubility tests confirmed a strong pH dependency for all hydroxyapatites at pH values <3.7. To our knowledge this is the first procedure that can rapidly synthesize radioactive labelled and chemically pure hydroxyapatite of different crystallinities: It can be easily modified to allow for labelling with other isotopes, such as 44Ca or 18O, in order to provide hydroxyapatite in reproducible manner for investigating the availability and uptake of P from apatite in future soil and environmental studies and beyond.
000857128 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000857128 588__ $$aDataset connected to CrossRef
000857128 7001_ $$0P:(DE-Juel1)129471$$aHofmann, D.$$b1
000857128 7001_ $$0P:(DE-Juel1)129427$$aAmelung, W.$$b2
000857128 7001_ $$0P:(DE-Juel1)129496$$aLewandowski, H.$$b3
000857128 7001_ $$00000-0001-7376-443X$$aKaiser, K.$$b4
000857128 7001_ $$0P:(DE-Juel1)145865$$aBol, R.$$b5
000857128 773__ $$0PERI:(DE-600)1499242-5$$a10.1016/j.apgeochem.2018.08.010$$gVol. 97, p. 181 - 186$$p181 - 186$$tApplied geochemistry$$v97$$x0883-2927$$y2018
000857128 8564_ $$uhttps://juser.fz-juelich.de/record/857128/files/1-s2.0-S0883292718302270-main.pdf$$yRestricted
000857128 8564_ $$uhttps://juser.fz-juelich.de/record/857128/files/1-s2.0-S0883292718302270-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000857128 909CO $$ooai:juser.fz-juelich.de:857128$$pVDB:Earth_Environment$$pVDB
000857128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166439$$aForschungszentrum Jülich$$b0$$kFZJ
000857128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129471$$aForschungszentrum Jülich$$b1$$kFZJ
000857128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b2$$kFZJ
000857128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129496$$aForschungszentrum Jülich$$b3$$kFZJ
000857128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b5$$kFZJ
000857128 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000857128 9141_ $$y2018
000857128 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000857128 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL GEOCHEM : 2017
000857128 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857128 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857128 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857128 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857128 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857128 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857128 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857128 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857128 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857128 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857128 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857128 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000857128 980__ $$ajournal
000857128 980__ $$aVDB
000857128 980__ $$aI:(DE-Juel1)IBG-3-20101118
000857128 980__ $$aUNRESTRICTED