001     857128
005     20210129235501.0
024 7 _ |a 10.1016/j.apgeochem.2018.08.010
|2 doi
024 7 _ |a 0883-2927
|2 ISSN
024 7 _ |a 1872-9134
|2 ISSN
024 7 _ |a WOS:000446455900017
|2 WOS
037 _ _ |a FZJ-2018-06372
082 _ _ |a 550
100 1 _ |a Wolff, Jan
|0 P:(DE-Juel1)166439
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Rapid wet chemical synthesis for 33P-labelled hydroxyapatite – An approach for environmental research
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542112399_11585
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Apatite is the principal primary phosphorus (P) source in the environment; yet there is no consensus on how it can be synthesized for controlled microcosm studies, particularly not in labelled form. Here, we present a methodology that allows for the production of stoichiometric 33Phosphorus (33P)-labelled hydroxyapatite powders produced by a simple and fast wet chemical procedure, with different precursor compounds and at different reaction (25, 40, 60 and 80 °C) and calcination (100 and 200 °C) temperatures. The resulting morphological structures were analysed by Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that rapid synthesis of hydroxyapatite is successful using 33P-labelled di-ammonium hydrogen phosphate and calcium nitrate with a Ca/P ratio of 1.67 in less than 30 h. Crystallinity increased with increasing reaction temperatures. Solubility tests confirmed a strong pH dependency for all hydroxyapatites at pH values <3.7. To our knowledge this is the first procedure that can rapidly synthesize radioactive labelled and chemically pure hydroxyapatite of different crystallinities: It can be easily modified to allow for labelling with other isotopes, such as 44Ca or 18O, in order to provide hydroxyapatite in reproducible manner for investigating the availability and uptake of P from apatite in future soil and environmental studies and beyond.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hofmann, D.
|0 P:(DE-Juel1)129471
|b 1
700 1 _ |a Amelung, W.
|0 P:(DE-Juel1)129427
|b 2
700 1 _ |a Lewandowski, H.
|0 P:(DE-Juel1)129496
|b 3
700 1 _ |a Kaiser, K.
|0 0000-0001-7376-443X
|b 4
700 1 _ |a Bol, R.
|0 P:(DE-Juel1)145865
|b 5
773 _ _ |a 10.1016/j.apgeochem.2018.08.010
|g Vol. 97, p. 181 - 186
|0 PERI:(DE-600)1499242-5
|p 181 - 186
|t Applied geochemistry
|v 97
|y 2018
|x 0883-2927
856 4 _ |u https://juser.fz-juelich.de/record/857128/files/1-s2.0-S0883292718302270-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/857128/files/1-s2.0-S0883292718302270-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:857128
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166439
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129496
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145865
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL GEOCHEM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21