000857132 001__ 857132
000857132 005__ 20210129235503.0
000857132 0247_ $$2doi$$a10.1029/2018WR023374
000857132 0247_ $$2ISSN$$a0043-1397
000857132 0247_ $$2ISSN$$a0148-0227
000857132 0247_ $$2ISSN$$a1944-7973
000857132 0247_ $$2ISSN$$a2156-2202
000857132 0247_ $$2Handle$$a2128/20011
000857132 0247_ $$2WOS$$aWOS:000448088100028
000857132 0247_ $$2altmetric$$aaltmetric:46887364
000857132 037__ $$aFZJ-2018-06376
000857132 082__ $$a550
000857132 1001_ $$0P:(DE-Juel1)165818$$aKeller, Johannes$$b0$$eCorresponding author
000857132 245__ $$aComparing Seven Variants of the Ensemble Kalman Filter: How Many Synthetic Experiments Are Needed?
000857132 260__ $$a[New York]$$bWiley$$c2018
000857132 3367_ $$2DRIVER$$aarticle
000857132 3367_ $$2DataCite$$aOutput Types/Journal article
000857132 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542113360_11587
000857132 3367_ $$2BibTeX$$aARTICLE
000857132 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857132 3367_ $$00$$2EndNote$$aJournal Article
000857132 520__ $$aThe ensemble Kalman filter (EnKF) is a popular estimation technique in the geosciences. It is used as a numerical tool for state vector prognosis and parameter estimation. The EnKF can, for example, help to evaluate the geothermal potential of an aquifer. In such applications, the EnKF is often used with small or medium ensemble sizes. It is therefore of interest to characterize the EnKF behavior for these ensemble sizes. For seven ensemble sizes (50, 70, 100, 250, 500, 1,000, and 2,000) and seven EnKF variants (damped, iterative, local, hybrid, dual, normal score, and classical EnKF), we computed 1,000 synthetic parameter estimation experiments for two setups: a 2‐D tracer transport problem and a 2‐D flow problem with one injection well. For each model, the only difference among synthetic experiments was the generated set of random permeability fields. The 1,000 synthetic experiments allow to calculate the probability density function of the root‐mean‐square error (RMSE) of the characterization of the permeability field. Comparing mean RMSEs for different EnKF variants, ensemble sizes and flow/transport setups suggests that multiple synthetic experiments are needed for a solid performance comparison. In this work, 10 synthetic experiments were needed to correctly distinguish RMSE differences between EnKF variants smaller than 10%. For detecting RMSE differences smaller than 2%, 100 synthetic experiments were needed for ensemble sizes 50, 70, 100, and 250. The overall ranking of the EnKF variants is strongly dependent on the physical model setup and the ensemble size.
000857132 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000857132 588__ $$aDataset connected to CrossRef
000857132 7001_ $$0P:(DE-Juel1)138662$$aHendricks Franssen, Harrie-Jan$$b1
000857132 7001_ $$00000-0003-4824-690X$$aMarquart, Gabriele$$b2
000857132 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2018WR023374$$gVol. 54, no. 9, p. 6299 - 6318$$n9$$p6299 - 6318$$tWater resources research$$v54$$x0043-1397$$y2018
000857132 8564_ $$uhttps://juser.fz-juelich.de/record/857132/files/Keller_et_al-2018-Water_Resources_Research.pdf$$yRestricted
000857132 8564_ $$uhttps://juser.fz-juelich.de/record/857132/files/1808.07843.pdf$$yOpenAccess
000857132 8564_ $$uhttps://juser.fz-juelich.de/record/857132/files/Keller_et_al-2018-Water_Resources_Research.pdf?subformat=pdfa$$xpdfa$$yRestricted
000857132 8564_ $$uhttps://juser.fz-juelich.de/record/857132/files/1808.07843.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857132 909CO $$ooai:juser.fz-juelich.de:857132$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000857132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165818$$aForschungszentrum Jülich$$b0$$kFZJ
000857132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b1$$kFZJ
000857132 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000857132 9141_ $$y2018
000857132 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857132 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000857132 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR RES : 2017
000857132 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857132 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857132 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857132 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857132 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857132 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000857132 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857132 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857132 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857132 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000857132 980__ $$ajournal
000857132 980__ $$aVDB
000857132 980__ $$aUNRESTRICTED
000857132 980__ $$aI:(DE-Juel1)IBG-3-20101118
000857132 9801_ $$aFullTexts