001     857132
005     20210129235503.0
024 7 _ |a 10.1029/2018WR023374
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2128/20011
|2 Handle
024 7 _ |a WOS:000448088100028
|2 WOS
024 7 _ |a altmetric:46887364
|2 altmetric
037 _ _ |a FZJ-2018-06376
082 _ _ |a 550
100 1 _ |a Keller, Johannes
|0 P:(DE-Juel1)165818
|b 0
|e Corresponding author
245 _ _ |a Comparing Seven Variants of the Ensemble Kalman Filter: How Many Synthetic Experiments Are Needed?
260 _ _ |a [New York]
|c 2018
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542113360_11587
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ensemble Kalman filter (EnKF) is a popular estimation technique in the geosciences. It is used as a numerical tool for state vector prognosis and parameter estimation. The EnKF can, for example, help to evaluate the geothermal potential of an aquifer. In such applications, the EnKF is often used with small or medium ensemble sizes. It is therefore of interest to characterize the EnKF behavior for these ensemble sizes. For seven ensemble sizes (50, 70, 100, 250, 500, 1,000, and 2,000) and seven EnKF variants (damped, iterative, local, hybrid, dual, normal score, and classical EnKF), we computed 1,000 synthetic parameter estimation experiments for two setups: a 2‐D tracer transport problem and a 2‐D flow problem with one injection well. For each model, the only difference among synthetic experiments was the generated set of random permeability fields. The 1,000 synthetic experiments allow to calculate the probability density function of the root‐mean‐square error (RMSE) of the characterization of the permeability field. Comparing mean RMSEs for different EnKF variants, ensemble sizes and flow/transport setups suggests that multiple synthetic experiments are needed for a solid performance comparison. In this work, 10 synthetic experiments were needed to correctly distinguish RMSE differences between EnKF variants smaller than 10%. For detecting RMSE differences smaller than 2%, 100 synthetic experiments were needed for ensemble sizes 50, 70, 100, and 250. The overall ranking of the EnKF variants is strongly dependent on the physical model setup and the ensemble size.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hendricks Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 1
700 1 _ |a Marquart, Gabriele
|0 0000-0003-4824-690X
|b 2
773 _ _ |a 10.1029/2018WR023374
|g Vol. 54, no. 9, p. 6299 - 6318
|0 PERI:(DE-600)2029553-4
|n 9
|p 6299 - 6318
|t Water resources research
|v 54
|y 2018
|x 0043-1397
856 4 _ |u https://juser.fz-juelich.de/record/857132/files/Keller_et_al-2018-Water_Resources_Research.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/857132/files/1808.07843.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/857132/files/Keller_et_al-2018-Water_Resources_Research.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/857132/files/1808.07843.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:857132
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165818
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21