000857133 001__ 857133 000857133 005__ 20210129235503.0 000857133 0247_ $$2doi$$a10.1029/2016JG003753 000857133 0247_ $$2ISSN$$a0148-0227 000857133 0247_ $$2ISSN$$a2156-2202 000857133 0247_ $$2ISSN$$a2169-8953 000857133 0247_ $$2ISSN$$a2169-8961 000857133 0247_ $$2Handle$$a2128/20012 000857133 0247_ $$2WOS$$aWOS:000447644800013 000857133 0247_ $$2altmetric$$aaltmetric:46876554 000857133 037__ $$aFZJ-2018-06377 000857133 082__ $$a550 000857133 1001_ $$00000-0002-0840-0717$$aShrestha, P.$$b0$$eCorresponding author 000857133 245__ $$aConnection Between Root Zone Soil Moisture and Surface Energy Flux Partitioning Using Modeling, Observations, and Data Assimilation for a Temperate Grassland Site in Germany 000857133 260__ $$a[Washington, DC]$$c2018 000857133 3367_ $$2DRIVER$$aarticle 000857133 3367_ $$2DataCite$$aOutput Types/Journal article 000857133 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542113548_11584 000857133 3367_ $$2BibTeX$$aARTICLE 000857133 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000857133 3367_ $$00$$2EndNote$$aJournal Article 000857133 520__ $$aLand surface models (LSMs) with different degrees of complexity are in use as lower boundary conditions for atmospheric models with the simpler LSMs preferentially used in numerical weather forecasting. This study evaluates the second‐generation TERRA Multi‐Layer and the third‐generation Community Land Model (CLM) to better understand the connection between root zone soil moisture and surface energy fluxes, which is important for predictions. Both LSMs were compared in multiyear, observation‐driven simulations at the Falkenberg grassland site (Germany), and their results were compared to observations. With their default settings for the site, both LSMs tend to overestimate the Bowen ratio, while CLM additionally exhibited a wet bias and a too low soil moisture variance. With modified photosynthetic parameters in CLM, the Bowen ratio improved considerably, but the soil moisture bias and its too low variance remained. Joint data assimilation with soil parameter update significantly improved the soil moisture variance but degraded the Bowen ratio. We could identify the default shallow root fraction distribution to be responsible for the overestimated Bowen ratio, which could be largely reduced by increasing the root fractions in deeper layers. This study demonstrates how observations and data assimilation with joint state‐parameter updating can be used to improve the realism of third‐generation LSMs and thus our understanding of the connection between root zone soil moisture and surface energy flux partitioning. 000857133 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0 000857133 588__ $$aDataset connected to CrossRef 000857133 7001_ $$0P:(DE-Juel1)140349$$aKurtz, W.$$b1 000857133 7001_ $$0P:(DE-HGF)0$$aVogel, G.$$b2 000857133 7001_ $$0P:(DE-HGF)0$$aSchulz, J.-P.$$b3 000857133 7001_ $$00000-0002-3149-4096$$aSulis, M.$$b4 000857133 7001_ $$0P:(DE-Juel1)138662$$aHendricks Franssen, H.-J.$$b5 000857133 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b6 000857133 7001_ $$00000-0003-3001-8642$$aSimmer, C.$$b7 000857133 773__ $$0PERI:(DE-600)2220777-6$$a10.1029/2016JG003753$$gVol. 123, no. 9, p. 2839 - 2862$$n9$$p2839 - 2862$$tJournal of geophysical research / Biogeosciences Biogeosciences [...]$$v123$$x2169-8953$$y2018 000857133 8564_ $$uhttps://juser.fz-juelich.de/record/857133/files/Shrestha_et_al-2018-Journal_of_Geophysical_Research__Biogeosciences-1.pdf$$yOpenAccess 000857133 8564_ $$uhttps://juser.fz-juelich.de/record/857133/files/Shrestha_et_al-2018-Journal_of_Geophysical_Research__Biogeosciences-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000857133 909CO $$ooai:juser.fz-juelich.de:857133$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire 000857133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b5$$kFZJ 000857133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b6$$kFZJ 000857133 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000857133 9141_ $$y2018 000857133 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000857133 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000857133 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES-BIOGEO : 2017 000857133 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000857133 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000857133 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000857133 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000857133 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000857133 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000857133 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000857133 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000857133 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000857133 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000857133 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000857133 980__ $$ajournal 000857133 980__ $$aVDB 000857133 980__ $$aUNRESTRICTED 000857133 980__ $$aI:(DE-Juel1)IBG-3-20101118 000857133 9801_ $$aFullTexts