001     857133
005     20210129235503.0
024 7 _ |a 10.1029/2016JG003753
|2 doi
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2169-8953
|2 ISSN
024 7 _ |a 2169-8961
|2 ISSN
024 7 _ |a 2128/20012
|2 Handle
024 7 _ |a WOS:000447644800013
|2 WOS
024 7 _ |a altmetric:46876554
|2 altmetric
037 _ _ |a FZJ-2018-06377
082 _ _ |a 550
100 1 _ |a Shrestha, P.
|0 0000-0002-0840-0717
|b 0
|e Corresponding author
245 _ _ |a Connection Between Root Zone Soil Moisture and Surface Energy Flux Partitioning Using Modeling, Observations, and Data Assimilation for a Temperate Grassland Site in Germany
260 _ _ |a [Washington, DC]
|c 2018
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542113548_11584
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Land surface models (LSMs) with different degrees of complexity are in use as lower boundary conditions for atmospheric models with the simpler LSMs preferentially used in numerical weather forecasting. This study evaluates the second‐generation TERRA Multi‐Layer and the third‐generation Community Land Model (CLM) to better understand the connection between root zone soil moisture and surface energy fluxes, which is important for predictions. Both LSMs were compared in multiyear, observation‐driven simulations at the Falkenberg grassland site (Germany), and their results were compared to observations. With their default settings for the site, both LSMs tend to overestimate the Bowen ratio, while CLM additionally exhibited a wet bias and a too low soil moisture variance. With modified photosynthetic parameters in CLM, the Bowen ratio improved considerably, but the soil moisture bias and its too low variance remained. Joint data assimilation with soil parameter update significantly improved the soil moisture variance but degraded the Bowen ratio. We could identify the default shallow root fraction distribution to be responsible for the overestimated Bowen ratio, which could be largely reduced by increasing the root fractions in deeper layers. This study demonstrates how observations and data assimilation with joint state‐parameter updating can be used to improve the realism of third‐generation LSMs and thus our understanding of the connection between root zone soil moisture and surface energy flux partitioning.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kurtz, W.
|0 P:(DE-Juel1)140349
|b 1
700 1 _ |a Vogel, G.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schulz, J.-P.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sulis, M.
|0 0000-0002-3149-4096
|b 4
700 1 _ |a Hendricks Franssen, H.-J.
|0 P:(DE-Juel1)138662
|b 5
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 6
700 1 _ |a Simmer, C.
|0 0000-0003-3001-8642
|b 7
773 _ _ |a 10.1029/2016JG003753
|g Vol. 123, no. 9, p. 2839 - 2862
|0 PERI:(DE-600)2220777-6
|n 9
|p 2839 - 2862
|t Journal of geophysical research / Biogeosciences Biogeosciences [...]
|v 123
|y 2018
|x 2169-8953
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/857133/files/Shrestha_et_al-2018-Journal_of_Geophysical_Research__Biogeosciences-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/857133/files/Shrestha_et_al-2018-Journal_of_Geophysical_Research__Biogeosciences-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:857133
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GEOPHYS RES-BIOGEO : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21