001 | 857133 | ||
005 | 20210129235503.0 | ||
024 | 7 | _ | |a 10.1029/2016JG003753 |2 doi |
024 | 7 | _ | |a 0148-0227 |2 ISSN |
024 | 7 | _ | |a 2156-2202 |2 ISSN |
024 | 7 | _ | |a 2169-8953 |2 ISSN |
024 | 7 | _ | |a 2169-8961 |2 ISSN |
024 | 7 | _ | |a 2128/20012 |2 Handle |
024 | 7 | _ | |a WOS:000447644800013 |2 WOS |
024 | 7 | _ | |a altmetric:46876554 |2 altmetric |
037 | _ | _ | |a FZJ-2018-06377 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Shrestha, P. |0 0000-0002-0840-0717 |b 0 |e Corresponding author |
245 | _ | _ | |a Connection Between Root Zone Soil Moisture and Surface Energy Flux Partitioning Using Modeling, Observations, and Data Assimilation for a Temperate Grassland Site in Germany |
260 | _ | _ | |a [Washington, DC] |c 2018 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1542113548_11584 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Land surface models (LSMs) with different degrees of complexity are in use as lower boundary conditions for atmospheric models with the simpler LSMs preferentially used in numerical weather forecasting. This study evaluates the second‐generation TERRA Multi‐Layer and the third‐generation Community Land Model (CLM) to better understand the connection between root zone soil moisture and surface energy fluxes, which is important for predictions. Both LSMs were compared in multiyear, observation‐driven simulations at the Falkenberg grassland site (Germany), and their results were compared to observations. With their default settings for the site, both LSMs tend to overestimate the Bowen ratio, while CLM additionally exhibited a wet bias and a too low soil moisture variance. With modified photosynthetic parameters in CLM, the Bowen ratio improved considerably, but the soil moisture bias and its too low variance remained. Joint data assimilation with soil parameter update significantly improved the soil moisture variance but degraded the Bowen ratio. We could identify the default shallow root fraction distribution to be responsible for the overestimated Bowen ratio, which could be largely reduced by increasing the root fractions in deeper layers. This study demonstrates how observations and data assimilation with joint state‐parameter updating can be used to improve the realism of third‐generation LSMs and thus our understanding of the connection between root zone soil moisture and surface energy flux partitioning. |
536 | _ | _ | |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) |0 G:(DE-HGF)POF3-255 |c POF3-255 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Kurtz, W. |0 P:(DE-Juel1)140349 |b 1 |
700 | 1 | _ | |a Vogel, G. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Schulz, J.-P. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Sulis, M. |0 0000-0002-3149-4096 |b 4 |
700 | 1 | _ | |a Hendricks Franssen, H.-J. |0 P:(DE-Juel1)138662 |b 5 |
700 | 1 | _ | |a Kollet, Stefan |0 P:(DE-Juel1)151405 |b 6 |
700 | 1 | _ | |a Simmer, C. |0 0000-0003-3001-8642 |b 7 |
773 | _ | _ | |a 10.1029/2016JG003753 |g Vol. 123, no. 9, p. 2839 - 2862 |0 PERI:(DE-600)2220777-6 |n 9 |p 2839 - 2862 |t Journal of geophysical research / Biogeosciences Biogeosciences [...] |v 123 |y 2018 |x 2169-8953 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/857133/files/Shrestha_et_al-2018-Journal_of_Geophysical_Research__Biogeosciences-1.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/857133/files/Shrestha_et_al-2018-Journal_of_Geophysical_Research__Biogeosciences-1.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:857133 |p openaire |p open_access |p driver |p VDB:Earth_Environment |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)138662 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)151405 |
913 | 1 | _ | |a DE-HGF |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |2 G:(DE-HGF)POF3-200 |v Terrestrial Systems: From Observation to Prediction |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J GEOPHYS RES-BIOGEO : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|