000857144 001__ 857144
000857144 005__ 20210129235508.0
000857144 010__ $$a
000857144 020__ $$a978-1-5386-3636-7
000857144 020__ $$a9781538636350
000857144 020__ $$a9781538636374 (print)
000857144 0247_ $$2doi$$a10.1109/ISBI.2018.8363539
000857144 0247_ $$2Handle$$a2128/20017
000857144 037__ $$aFZJ-2018-06388
000857144 041__ $$aEnglish
000857144 1001_ $$0P:(DE-Juel1)164129$$aSchmitz, Daniel$$b0$$ufzj
000857144 1112_ $$a2018 IEEE 15th International Symposium on Biomedical Imaging$$cWashington$$d2018-04-04 - 2018-04-07$$gISBI 2018$$wDC
000857144 245__ $$aA least squares approach for the reconstruction of nerve fiber orientations from tiltable specimen experiments in 3D-PLI
000857144 260__ $$a[Piscataway, NJ]$$bIEEE$$c2018
000857144 29510 $$a 
000857144 300__ $$a132 - 135
000857144 3367_ $$2ORCID$$aCONFERENCE_PAPER
000857144 3367_ $$033$$2EndNote$$aConference Paper
000857144 3367_ $$2BibTeX$$aINPROCEEDINGS
000857144 3367_ $$2DRIVER$$aconferenceObject
000857144 3367_ $$2DataCite$$aOutput Types/Conference Paper
000857144 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1542115251_11586
000857144 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000857144 520__ $$a3D-Polarized Light Imaging has become a unique technique to study the fiber architecture of unstained brain sections at the meso- and microscale. It exploits the intrinsic birefringence of nerve fibers which is measured with a customized Polarimeter in which the brain section is placed on a tiltable specimen stage. So far, a computationally fast analytical method based on the discrete Fourier transformation to analyze the data acquired with the tiltable specimen stage has been used. In this study, we propose a new algorithm based on a fitting approach which provides an improved stability against measurement noise resulting in a more realistic orientation interpretation, in particular for low signals. For the first time, it is demonstrated how fiber courses at the boundary of white and grey matter can robustly be reconstructed with 3D-PLI. This significantly improves the reliability of mapping the cortex based on 3D-PLI data.
000857144 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000857144 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000857144 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000857144 588__ $$aDataset connected to CrossRef Conference
000857144 650_7 $$0(DE-588)4038243-6$$2gnd$$aMedizin
000857144 650_7 $$0(DE-588)4006617-4$$2gnd$$aBildgebendes Verfahren
000857144 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b1$$ufzj
000857144 7001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b2$$ufzj
000857144 7001_ $$0P:(DE-Juel1)131632$$aAxer, Markus$$b3$$ufzj
000857144 773__ $$a10.1109/ISBI.2018.8363539
000857144 8564_ $$uhttps://juser.fz-juelich.de/record/857144/files/Paper_Daniel_Schmitz_ISBI_2018.pdf$$yOpenAccess
000857144 8564_ $$uhttps://juser.fz-juelich.de/record/857144/files/Paper_Daniel_Schmitz_ISBI_2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857144 909CO $$ooai:juser.fz-juelich.de:857144$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000857144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164129$$aForschungszentrum Jülich$$b0$$kFZJ
000857144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b1$$kFZJ
000857144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b2$$kFZJ
000857144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131632$$aForschungszentrum Jülich$$b3$$kFZJ
000857144 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000857144 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000857144 9141_ $$y2018
000857144 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857144 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000857144 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000857144 980__ $$acontrib
000857144 980__ $$aVDB
000857144 980__ $$aUNRESTRICTED
000857144 980__ $$acontb
000857144 980__ $$aI:(DE-Juel1)INM-1-20090406
000857144 980__ $$aI:(DE-Juel1)JSC-20090406
000857144 9801_ $$aFullTexts