001     857144
005     20210129235508.0
010 _ _ |a
020 _ _ |a 978-1-5386-3636-7
020 _ _ |a 9781538636350
020 _ _ |a 9781538636374 (print)
024 7 _ |a 10.1109/ISBI.2018.8363539
|2 doi
024 7 _ |a 2128/20017
|2 Handle
037 _ _ |a FZJ-2018-06388
041 _ _ |a English
100 1 _ |a Schmitz, Daniel
|0 P:(DE-Juel1)164129
|b 0
|u fzj
111 2 _ |a 2018 IEEE 15th International Symposium on Biomedical Imaging
|g ISBI 2018
|c Washington
|d 2018-04-04 - 2018-04-07
|w DC
245 _ _ |a A least squares approach for the reconstruction of nerve fiber orientations from tiltable specimen experiments in 3D-PLI
260 _ _ |a [Piscataway, NJ]
|c 2018
|b IEEE
295 1 0 |a
300 _ _ |a 132 - 135
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1542115251_11586
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a 3D-Polarized Light Imaging has become a unique technique to study the fiber architecture of unstained brain sections at the meso- and microscale. It exploits the intrinsic birefringence of nerve fibers which is measured with a customized Polarimeter in which the brain section is placed on a tiltable specimen stage. So far, a computationally fast analytical method based on the discrete Fourier transformation to analyze the data acquired with the tiltable specimen stage has been used. In this study, we propose a new algorithm based on a fitting approach which provides an improved stability against measurement noise resulting in a more realistic orientation interpretation, in particular for low signals. For the first time, it is demonstrated how fiber courses at the boundary of white and grey matter can robustly be reconstructed with 3D-PLI. This significantly improves the reliability of mapping the cortex based on 3D-PLI data.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 1
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|f H2020-Adhoc-2014-20
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
650 _ 7 |a Medizin
|0 (DE-588)4038243-6
|2 gnd
650 _ 7 |a Bildgebendes Verfahren
|0 (DE-588)4006617-4
|2 gnd
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 1
|u fzj
700 1 _ |a Lippert, Thomas
|0 P:(DE-Juel1)132179
|b 2
|u fzj
700 1 _ |a Axer, Markus
|0 P:(DE-Juel1)131632
|b 3
|u fzj
773 _ _ |a 10.1109/ISBI.2018.8363539
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/857144/files/Paper_Daniel_Schmitz_ISBI_2018.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/857144/files/Paper_Daniel_Schmitz_ISBI_2018.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:857144
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164129
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132179
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131632
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21