001     857165
005     20240313094941.0
024 7 _ |a 10.3389/fninf.2018.00068
|2 doi
024 7 _ |a 2128/20047
|2 Handle
024 7 _ |a WOS:000449250100001
|2 WOS
024 7 _ |a altmetric:49774193
|2 altmetric
024 7 _ |a pmid:30455637
|2 pmid
037 _ _ |a FZJ-2018-06402
082 _ _ |a 610
100 1 _ |a Blundell, Inga
|0 P:(DE-Juel1)166002
|b 0
245 _ _ |a Code Generation in Computational Neuroscience: A Review of Tools and Techniques
260 _ _ |a Lausanne
|c 2018
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1563261662_389
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Advances in experimental techniques and computational power allowing researchers to gather anatomical and electrophysiological data at unprecedented levels of detail have fostered the development of increasingly complex models in computational neuroscience. Large-scale, biophysically detailed cell models pose a particular set of computational challenges, and this has led to the development of a number of domain-specific simulators. At the other level of detail, the ever growing variety of point neuron models increases the implementation barrier even for those based on the relatively simple integrate-and-fire neuron model. Independently of the model complexity, all modeling methods crucially depend on an efficient and accurate transformation of mathematical model descriptions into efficiently executable code. Neuroscientists usually publish model descriptions in terms of the mathematical equations underlying them. However, actually simulating them requires they be translated into code. This can cause problems because errors may be introduced if this process is carried out by hand, and code written by neuroscientists may not be very computationally efficient. Furthermore, the translated code might be generated for different hardware platforms, operating system variants or even written in different languages and thus cannot easily be combined or even compared. Two main approaches to addressing this issues have been followed. The first is to limit users to a fixed set of optimized models, which limits flexibility. The second is to allow model definitions in a high level interpreted language, although this may limit performance. Recently, a third approach has become increasingly popular: using code generation to automatically translate high level descriptions into efficient low level code to combine the best of previous approaches. This approach also greatly enriches efforts to standardize simulator-independent model description languages. In the past few years, a number of code generation pipelines have been developed in the computational neuroscience community, which differ considerably in aim, scope and functionality. This article provides an overview of existing pipelines currently used within the community and contrasts their capabilities and the technologies and concepts behind them.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 1
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 2
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|f H2020-Adhoc-2014-20
|x 3
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 4
536 _ _ |a Virtual Connectomics - Deutschland - USA Zusammenarbeit in Computational Science: Mechanistische Zusammenhänge zwischen Struktur und funktioneller Dynamik im menschlichen Gehirn (BMBF-01GQ1504B)
|0 G:(DE-Juel1)BMBF-01GQ1504B
|c BMBF-01GQ1504B
|x 5
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 6
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brette, Romain
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cleland, Thomas A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Close, Thomas G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Coca, Daniel
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Davison, Andrew P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Diaz, Sandra
|0 P:(DE-Juel1)165859
|b 6
700 1 _ |a Fernandez Musoles, Carlos
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Gleeson, Padraig
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Goodman, Dan F. M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Hines, Michael
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Hopkins, Michael W.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kumbhar, Pramod
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Lester, David R.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Marin, Bóris
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 15
700 1 _ |a Müller, Eric
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Nowotny, Thomas
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Peyser, Alexander
|0 P:(DE-Juel1)161525
|b 18
700 1 _ |a Plotnikov, Dimitri
|0 P:(DE-Juel1)169429
|b 19
700 1 _ |a Richmond, Paul
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Rowley, Andrew
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Rumpe, Bernhard
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Stimberg, Marcel
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Stokes, Alan B.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Tomkins, Adam
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Trensch, Guido
|0 P:(DE-Juel1)168379
|b 26
700 1 _ |a Woodman, Marmaduke
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Eppler, Jochen Martin
|0 P:(DE-Juel1)142538
|b 28
|e Corresponding author
773 _ _ |a 10.3389/fninf.2018.00068
|g Vol. 12, p. 68
|0 PERI:(DE-600)2452979-5
|p 68
|t Frontiers in neuroinformatics
|v 12
|y 2018
|x 1662-5196
856 4 _ |u https://juser.fz-juelich.de/record/857165/files/2018-0121133-6.pdf
856 4 _ |u https://juser.fz-juelich.de/record/857165/files/2018-0121133-6.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/857165/files/fninf-12-00068.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/857165/files/fninf-12-00068.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:857165
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166002
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165859
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)151166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)161525
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)169429
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)168379
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 28
|6 P:(DE-Juel1)142538
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT NEUROINFORM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21