. : - <& _ cscs
AR Human Braln PPOJ eCt 0 J U L I C H « ‘ Centro Svizzero di Calcolo Scientifico

FORSCHUNGSZENTRUM QU Swiss National Supercomputing Centre

Arbor

A morphologically detailed neural network simulation library for modern high performance computer architectures

Ben Cumming’ Stuart Yates? Nora Abi Akar? Anne Kiisters® Wouter Klijn'? Alexander Peyserb

Co-funded by
the European Union

2Swiss National Supercomputing Center PSimulation Lab Neuroscience, Forschungszentrum FZ-Jiilich

What is Arbor? Performance
Arbor is a library for the simulation of large networks of morphologically-detailed daint-me | Cray XCA0: 2x 18-core Broadwell per node
daint-gpu Cray XC50: 1 X P100 GPU per node
neurons for all HPC systems in the HBP. cells 0 SEE € SRS i o ol
Runs on GPU systems, vectorized multicore, Intel KNL and laptops. :‘“”t‘jrk e network

Modular design for extensibility to new computer architectures.

Single Node Scaling

Arbor is deVelOped by a team from HPC centers. This benchmark scales a simple ring model on a single

CSCS and FZ‘JUhCh N SGA2 WP 73 node of Piz Daint.
30m I t N del fit in 64 GB -
arges euron mode I 1IN
|Progress & Features | Python Interface 10m
Features added since the last HBP Summit: A Python wrapper for Arbor will be released this L £
year. 0 . .
L . | E 15 |

o .\/ec.tor.lzatlon of NI\/IO_DL. kernels with vector e Simple wrappper of the C-++ API. 5 10 i

intrinsics. See Vectorization box below. . . . © —o—= :

A cnik L . ¢ cvstern that e Basis for PyNN integration. = . Neuron
e A spike communication and event system tha . . .

PIfE ¢ . Y e Working prototype with MPI & GPU on Cray. ! —0— Arbor-mc
scales with negligible overheads to very large —o— Arbor-gpu
models and clusters. .

o _ Ask us for a demonstration of the o4 128 256 512 1k 2k 4k 8k 16k
e A new task-based threading implementation. Byth i a cells
CMake installable target and simple ython wrapper rUnming In a Jupyter
o . .
. . 5 PIe notebook on Piz Daint. e Arbor’s efficient multicore memory layout gives per-
configuration for users of the Arbor library. .
. . . | fect scaling.
e Fine-grained allocation of CPU and GPU Below is a simple example of defining, building and e NEURON scales poorly from 64—-256 cells as cache
resources. running a network with 4 Soma—only cells: utilization decreases.
e An API for receiving spikes from external
simulators #!/usr/bin/python3 _ _
- | import pyarb as arb This plot shows the speedup of Arbor relative to
. . 1 i i b.recipe): NEURON for the single node test above.
Features coming soon to Arbor include: s fifﬁ;ifizzl{fr n;?Clpe) 5
super (). __init__ () 35
e A Python wrapper. See the Python Interface self.ncells = n 20
b for detail def num_cells(self):
Ox Tor detalls. return self.ncells 25
® Gapjunctions. # each cell is a soma-only cell g—
C I i+ h R def cell_description(self, gid): 1320
e Loupling with NEST TVB. cell = arb.make_soma_cell () %15
e Coupling with in-situ visualization and analytics. loc = arb.segment_location(0, 0.5) 73
_ _ _ cell.add_synapse(loc) 10
e A benchmark and validation suite. cell.add_detector (loc, 20)
e Higher-order time stepping and error control. if gid==0: # add a stimulus to first cell 0
cell.add_stimulus (loc, 0, 20, 0.01)
return cell %4 128 256 512 1k 2k 4k 8k

alk to us about features that you need.

1 synapse target on each cell
def num_targets(self, gid):
return 1

cells
e For few cells per core NEURON is 5—10x slower.

1 spike detect h cell . .
: : 4 SPIRE @onecror Jn oatl of e With more than 7 cells per core Arbor is over 20x
ef num_sources(self, gid):
Vectorization ;
return 1 aster.

Arbor uses a new library for SIMD vectorization. ieiliiiii:l;reg?g’fl -compartment e Arbor's GPU backend is efficient with 1000 or more

. cells per GPU.
e Generic vectorized code is generated from return arb.cell_kind.cableld
. S # each cell has one
NMODL ion channel and synapse descriptions. # incoming connection from Arbor Scales On Large Clusters
e Adding support for new SIMD architectures is # the cell with gid-1 o .
. & >Upp S def connections_on(self, gid): Here a model similar the one above with a network of
straightforward. src_id = (gid-1) % self.ncells

_ _ | o src = arb.cell _member (src, O) 10,000 random connections per cell is weak-scaled from
Speedup of total time to solution with vectorization tgt = arb.cell_member (gid, O0) one to hundreds of nodes with 8000 cells per node:

is 0.5—2.5%. The plot below shows speedup on a return larb.connection(src, tgt, 0.1, 10)]

: # get parallel arbor context 100 —
range of Intel CPUs, both for single core and for a # by default takes all 1 million cells
fu” SOCkEt. # available cores and GPUs

ctx = arb.context () 90 ~

make a 4 cell ring

Vectorization Speedup of Wall Time recipe = ring recipe (4)

make the simulation

4 million cells

wall time (s)
S

A | | | | sim = arb.simulation(recipe, ctx)
0 core |
get a spike recorder 70
[]DSOCkEt recorder = arb.make_spike_recorder (sim) —0— time mc
run simulation for 100 ms —O— time gpu
Y — sim.run (100, 0.025)
, , 1 2 4 8 16 32 64 128 256 512
print the spikes
o for spike in recorder.spikes: nodes
ég print (’cell {} at {:8.3f} ms?’> \
3 9| | .format (spike.source.gid, spike.time)) e Multicore and GPU weak scale perfectly.
o e The GPU requires 25% less energy.
7 cell O at 5.375 ms
cell 1 at 15.700 ms
A - cell 2 at 26.025 ms , |
cell 3 at 36.350 ms Get In tOUCh
cell O at 46.675 ms
cell 1l at 57.000 ms source | github.com/arbor-sim/arbor
cell 2 at 67.325 ms
\ | S | \ | e g\’ ceﬁ g at ;;-ggg ms email | bcumming@cscs.ch
X We \2 W ce at : ms : :
4 \2® “Boad 7ge0“sw ol A e GE. 206 e a.peyser@fz-juelich.de
e

