
Arbor
A morphologically detailed neural network simulation library for modern high performance computer architectures

Ben Cumminga, Stuart Yatesa, Nora Abi Akara, Anne Küstersb, Wouter Klijnb, Alexander Peyserb

aSwiss National Supercomputing Center bSimulation Lab Neuroscience, Forschungszentrum FZ-Jülich

What is Arbor?

Arbor is a library for the simulation of large networks of morphologically-detailed

neurons for all HPC systems in the HBP.

Runs on GPU systems, vectorized multicore, Intel KNL and laptops.
Modular design for extensibility to new computer architectures.

Arbor is developed by a team from HPC centers.

CSCS and FZ-Jülich in SGA2 WP 7.3.

Progress & Features

Features added since the last HBP Summit:

• Vectorization of NMODL kernels with vector
intrinsics. See Vectorization box below.

• A spike communication and event system that
scales with negligible overheads to very large
models and clusters.

• A new task-based threading implementation.

• CMake installable target and simple
configuration for users of the Arbor library.

• Fine-grained allocation of CPU and GPU
resources.

• An API for receiving spikes from external
simulators.

Features coming soon to Arbor include:

• A Python wrapper. See the Python Interface

box for details.

• Gap junctions.

• Coupling with NEST & TVB.

• Coupling with in-situ visualization and analytics.

• A benchmark and validation suite.

• Higher-order time stepping and error control.

Talk to us about features that you need.

Vectorization

Arbor uses a new library for SIMD vectorization.

• Generic vectorized code is generated from
NMODL ion channel and synapse descriptions.

• Adding support for new SIMD architectures is
straightforward.

Speedup of total time to solution with vectorization
is 0.5–2.5×. The plot below shows speedup on a
range of Intel CPUs, both for single core and for a
full socket.

Vectorization Speedup of Wall Time

i7 Lapt
op

Xeon
Broa

dwell

Xeon
Skyla

ke KNL
0

1

2

3

4

sp
ee

ed
u
p

core

socket

Python Interface

A Python wrapper for Arbor will be released this
year.

• Simple wrappper of the C++ API.

• Basis for PyNN integration.

• Working prototype with MPI & GPU on Cray.

Ask us for a demonstration of the
Python wrapper running in a Jupyter

notebook on Piz Daint.

Below is a simple example of defining, building and
running a network with 4 soma-only cells:

#!/usr/bin/python3

import pyarb as arb

class ring_recipe(arb.recipe):
def __init__(self , n):

super (). __init__ ()
self.ncells = n

def num_cells(self):
return self.ncells

each cell is a soma -only cell
def cell_description(self , gid):

cell = arb.make_soma_cell ()
loc = arb.segment_location (0, 0.5)
cell.add_synapse(loc)
cell.add_detector(loc , 20)

if gid ==0: # add a stimulus to first cell
cell.add_stimulus(loc , 0, 20, 0.01)

return cell

1 synapse target on each cell
def num_targets(self , gid):

return 1

1 spike detector on each cell
def num_sources(self , gid):

return 1

all cells are multi -compartment
def kind(self , gid):

return arb.cell_kind.cable1d

each cell has one
incoming connection from
the cell with gid -1
def connections_on(self , gid):

src_id = (gid -1) % self.ncells
src = arb.cell_member(src , 0)
tgt = arb.cell_member(gid , 0)
return [arb.connection(src , tgt , 0.1, 10)]

get parallel arbor context
by default takes all
available cores and GPUs
ctx = arb.context ()

make a 4 cell ring
recipe = ring_recipe (4)

make the simulation
sim = arb.simulation(recipe , ctx)

get a spike recorder
recorder = arb.make_spike_recorder(sim)

run simulation for 100 ms
sim.run(100, 0.025)

print the spikes
for spike in recorder.spikes:

print(’cell {} at {:8.3f} ms’ \
.format(spike.source.gid , spike.time))

cell 0 at 5.375 ms
cell 1 at 15.700 ms
cell 2 at 26.025 ms
cell 3 at 36.350 ms
cell 0 at 46.675 ms
cell 1 at 57.000 ms
cell 2 at 67.325 ms
cell 3 at 77.650 ms
cell 0 at 87.975 ms
cell 1 at 98.300 ms

Performance

daint-mc Cray XC40: 2× 18-core Broadwell per node

daint-gpu Cray XC50: 1×P100 GPU per node

cells 150 compartments & 10,000 synapses per cell
Passive dendrites, Hodgkin-Huxley soma

network ring network

duration 100 ms

Single Node Scaling

This benchmark scales a simple ring model on a single

node of Piz Daint.

64 128 256 512 1k 2k 4k 8k 16k

1s

10s

1m

10m

30m
largest Neuron model fit in 64 GB

cells

w
al

l
ti
m

e
(s

)

Neuron

Arbor-mc

Arbor-gpu

• Arbor’s efficient multicore memory layout gives per-

fect scaling.

• NEURON scales poorly from 64–256 cells as cache

utilization decreases.

This plot shows the speedup of Arbor relative to
NEURON for the single node test above.

64 128 256 512 1k 2k 4k 8k
0

5

10

15

20

25

30

35

cells

sp
ee

d
u
p

Arbor-mc

Arbor-gpu

• For few cells per core NEURON is 5–10× slower.

• With more than 7 cells per core Arbor is over 20×

faster.

• Arbor’s GPU backend is efficient with 1000 or more

cells per GPU.

Arbor Scales On Large Clusters

Here a model similar the one above with a network of

10,000 random connections per cell is weak-scaled from

one to hundreds of nodes with 8000 cells per node:

1 2 4 8 16 32 64 128 256 512

70

80

90

100
1 million cells

4 million cells

nodes

w
al

l
ti
m

e
(s

)

time mc

time gpu

• Multicore and GPU weak scale perfectly.

• The GPU requires 25% less energy.

Get in touch!

source github.com/arbor-sim/arbor

email bcumming@cscs.ch
a.peyser@fz-juelich.de

