






Why use L2L on HPC?

◮ To execute computationally expensive training runs.

Optimizee needs significant resources to run in reasonable
time, e.g. biological networks like the multi-area model

◮ To perform extensive (hyper-) parameter optimizations
over large spaces

Optimizee is light weight but many parallel instances need to
be explored at one time like in parameter sweeps for TVB

◮ To couple external optimizees to optimizers running on
large data sets or requiring expensive computations on
HPC

Optimizing neuromorphic networks and neurons
Optimizing robotics applications

2 / 12





L2L and parameter search flexibility

◮ The optimizee can have any form

Provides significant flexibility to the user
A common set of meta-learning/search/optimization
algorithms are in early development

◮ Applicable to most scientific domains

Driven by and specialized for neuroscience

4 / 12











L2L neuroscience workflow possibilities

◮ Parameter fitting/optimization of learning BNN models

◮ Exploration of hyperparameters

◮ Mixing standard fitness rules with expert knowledge scientist
in the loop

◮ Online visualization of the progress of complex optimizees

◮ Visualization of the outer learning process

9 / 12





L2L: Infrastructure components

◮ JuPeX: L2L is currently implemented on HPC with JUBE
plus on-going work with UNICORE

◮ JUBE is a benchmarking tool developed in Jlich

Previously: execution of functions/models using a brute force
approach over a set of parameters
With L2L: parameters to be explored by JUBE are set by the
outer loop optimizer

◮ UNICORE is a framework for the deployment of workflows on
HPC

Allows very long optimization runs (from hours to months) in
progress

◮ ICEI/Fenix infrastructure to support distributed storage

Future extension to improve support for external coupling of
neuromorphic and robotic applications as well as elastic
resources for time/generation varying demands

11 / 12







References

12 / 12


