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Impact of complex adatom-induced interactions on quantum spin Hall phases
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Adsorbate engineering offers a seemingly simple approach to tailor spin-orbit interactions in atomically thin
materials and thus to unlock the much sought-after topological insulating phases in two dimensions. However, the
observation of an Anderson topological transition induced by heavy adatoms has proved extremely challenging de-
spite substantial experimental efforts. Here, we present a multiscale approach combining advanced first-principles
methods and accurate single-electron descriptions of adatom-host interactions using graphene as a prototypical
system. Our study reveals a surprisingly complex structure in the interactions mediated by random adatoms,
including hitherto neglected hopping processes leading to strong valley mixing. We argue that the unexpected
intervalley scattering strongly impacts the ground state at low adatom coverage, which would provide a compelling
explanation for the absence of a topological gap in recent experimental reports on graphene. Our conjecture is
confirmed by real-space Chern number calculations and large-scale quantum transport simulations in disordered
samples. This resolves an important controversy and suggests that a detectable topological gap can be achieved
by increasing the spatial range of the induced spin-orbit interactions on graphene, e.g., using nanoparticles.

DOI: 10.1103/PhysRevB.98.081407

The attachment of adsorbates to two-dimensional materials
has attracted much interest in recent years, as a route to
tailoring material properties and realizing novel phenomena
[1–5]. In graphene, adatoms have been shown to induce
band gaps [6–10], magnetic moments [11–13], and even
superconductivity [14–17].

Adsorbate engineering could likewise provide atomic con-
trol over fundamental spin-orbit phenomena, such as spin
relaxation [18–21] and Mott (skew) scattering [22–25]. Recent
studies have predicted that the dilute assembly of heavy
adatoms can massively enhance the weak spin-orbit energy
gap of graphene [26–29], opening a promising route towards
the realization of nontrivial topological insulating phases,
including the quantum spin Hall (QSH) state [30]. However,
transport measurements on samples decorated with heavy
species, including In and Ir, have yet to show any signature
of topological gap opening [31–35]. In this Rapid Commu-
nication, we show that a thorough treatment of disorder—
combining accurate model Hamiltonians with quantum trans-
port simulations—is essential to predict the topological char-
acter of adatom-engineered systems and reconcile this con-
tradiction. Our approach reveals that randomly distributed

*jlischner597@gmail.com
†aires.ferreira@york.ac.uk

heavy adatoms on graphene give rise to scattering between
inequivalent valleys in the band structure, hindering the
emergence of topologically protected edge states even in

the absence of extrinsic factors, such as adatom clustering
[36]. This resolves a controversy regarding the nature of
spin-orbit interactions in adatom-decorated graphene and in-
dicates that decoration with small clusters or nanoparticles, for
which intervalley scattering is strongly reduced, may offer a
route towards the realization of the much sought-after QSH
phase.

Pristine graphene is a QSH insulator, but the smallness of
its intrinsic spin-orbit interaction (in the range of 25–50 µeV
[37–40]) has thus far precluded achieving the dissipationless
quantum transport regime [41–43]. The opening of a detectable
QSH gap requires a massive enhancement of graphene’s
characteristic spin-orbit coupling (SOC), which preserves spin
angular momentum Sz [30]. Previous work suggested that this
can be achieved via decoration with nonmagnetic adatoms with
a p-outer electron shell [26], as they induce spin-conserving
‘intrinsiclike’ SOC [22]. As a prototypical heavy element, we
consider thallium (Tl) [26]. The quasiparticle band structure
of the thallium adatom on graphene was obtained employing
a fully relativistic ab initio GW approach; see Supplemental
Material (SM) [44] for details.

First-principles multiscale approach. We use our
first-principles supercell calculations to parametrize a
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single-electron Hamiltonian capturing all the relevant
interactions mediated by (dilute) adatoms embedded in
large area graphene samples. The first step is to derive
a graphene–single-adatom tight-binding (TB) model that
faithfully reproduces the ab initio band structure. Enforcing
time-reversal symmetry and invariance with respect to the C6v

point group, one easily finds H = Hg + Ha + Vga [22,26],
where

Hg = − t
∑

〈ij〉

c†
r i
crj

+

(
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∑
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c†
r i
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The first two terms are the Hamiltonians of π electrons
on graphene and 6p states of a Tl atom, respectively.
c
†
r i

≡ (c†
r i↑, c

†
r i↓) and d

†
m ≡ (d†

m↑, d
†
m↓) are the corresponding

fermionic creation operators, sx,y,z are Pauli matrices acting
on the spin space, and s± = (sx ± isy )/2. The sites adjacent
to the adatom define a hexagonal plaquette, P ≡ {1, . . . , 6}.
Vga is the adatom-graphene hybridization term written as a
function of the plaquette operator for states with definite angu-
lar momentum �

†
m = (1/

√
6)

∑

j∈P exp {iπm(j − 1)/3}c†rj

[66]. Next-nearest- and third-nearest-neighbor corrections
(δHt ′,t ′′ ) are included in order to improve agreement to the
first-principles results. The minimal Hamiltonian [Eqs. (1)–
(3)] contains nine parameters: the C-C hoppings t , t ′, and t ′′,
the local chemical potential change on C sites next to Tl, δµ, the
Tl outer-shell energies ǫ0 and ǫ±1, the Tl spin-orbit energy λ,
and the C-Tl hoppings τ0 and τ±1. We adjust these parameters
until the band structures quantitatively reproduce the first-
principles calculations over a window of ±1 eV around the
Dirac point (see SM [44]). The initial guess for the parameters
is informed by a direct evaluation of hopping integrals between
atom-centred maximally localized Wannier functions [44]. The
quasiparticle band structure obtained from density functional
theory (DFT)- and GW -parametrized minimal TB models is
shown in Fig. 1. Bands below the Dirac point (ǫ ≡ 0) derive
mostly from graphene π states. The flatband with energy
≈0.4 eV is a Tl 6p state. Interestingly, the GW corrections
are seen to bring this band closer to the Dirac point. Moreover,
the gap at the Dirac point is 23 meV significantly larger

than the DFT value of 13 meV. To what extent the optimistic
first-principles estimates signal a measurable topological gap
in real samples will depend on a delicate competition between
spin-conserving SOC and two other interactions mediated by
disorder, which we unveil in what follows.

Adatom scattering potential. In realistic conditions, dilute
adatoms occupy random positions and thus act as scatter-

ing centers. The information on the adatom scattering po-
tential is contained in the local density of states (LDOS)
[68]. The crucial step in our multiscale approach consists
of deriving a (graphene-only) TB model for the scattering
potential compatible with the first-principles results for the

13 meV

23 meV

FIG. 1. (a) Fully relativistic DFT band structure for a thallium
atom on graphene. (b) The corresponding quasiparticle band structure
from a fully relativistic GW calculation.

adatom-graphene supercell (see Fig. 1). To this end, we trace
out the adatom degrees of freedom in Eqs. (1)–(3) through a
Löwdin transformation. Formally, the resulting graphene-only
TB Hamiltonian is given by Heff = Hg + �P (ǫ), where �P (ǫ)
is the real-space self-energy generated by a single adatom
[44]. This term breaks translational symmetry and thus acts
as a bona fide disorder interaction. Finally, the Hamiltonian of
graphene with a dilute adatom coverage is obtained by adding
up independent contributions {�P (ǫ)} from adatoms located
at random plaquettes Pk (k = 1 . . . N ). This procedure has two
advantages. It captures all short-range interactions induced by
the adatom (see below). Second, being based on a graphene-
only description, it allows a straightforward interpretation
of quantum transport calculations. Explicit evaluation of the
self-energy gives rise to the following effective interaction
Hamiltonian V̂dis =

∑N
k=1 �̂Pk

, with

�̂P =
∑
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(b)
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FIG. 2. Complex adatom-graphene interactions in realistic sce-
narios. (a) NNN hoppings. (b) On-site energies. (c), (d) Hopping
processes opening the intervalley channel unveiled in this work.
Green and red lines represent bare and adatom-induced hoppings,
respectively; arrows indicate the presence of imaginary “chiral”
components, making such hoppings sensitive to directions and spin
projections.

where ζij equals ∓1 for circulation around the P th pla-
quette (anti)clockwise and �ij = ı(ξij s

+ + ξ ∗
ij s

−) with ξij =
exp[ı(j − 1)π/3] − exp[ı(i − 1)π/3]. The effective hoppings
are defined by λR =

√
2λτ0τ1/Dad and

t ′n + ıt ′′n = eınπ/3X1 + X0 + e−ınπ/3X−1, (5)

where X1 = τ 2
1 (ǫ − ǫ0)/Dad, X0 = τ 2

0 (ǫ − ǫ1 + λ)/Dad,
X−1 = τ 2

1 /[6(ǫ − ǫ1 − λ)], and Dad = 6[ǫ2 − ǫ(ǫ0 + ǫ1 −
λ) + ǫ0(ǫ1 − λ) − 2λ2]. The first terms (t ′1 and t ′′1 ) modify
the hopping between nearest-neighbor (NN) atoms, while
the second line describes next-nearest-neighbor (NNN)
hoppings, including a chiral component (t ′′2 ), which—in the
absence of the other terms—transforms graphene into a QSH
insulator [26]. The terms in the third line capture hoppings
between C atoms on opposite sides of the adatom (t3) and
spin-flip processes between all pairs of sites in the impurity
plaquette (λR). The latter is a Rashba-type interaction, which
is vanishing small near the Dirac points and thus can be safely
neglected [23,26]. The relevant interactions are visualized in
Fig. 2.

Remarkably, the effective Hamiltonian obtained here by a
rigorous adatom-decimation procedure is far more complex

than previous models [26]. Importantly, t ′1 and t ′3 for heavy
species can be significantly larger than the chiral NNN hop-
ping. From the ab initio parameters derived for Tl [44] we ob-
tain t ′1 ≈ 10t ′′2 at ǫ = 0. To shed further light on the significance
of hitherto neglected terms [Figs. 2(c) and 2(d)], we derive a
long-wavelength effective description. As customary, we in-
troduce the field operators cστs (k) =

∫

d r eı(k+τK )·r
�στs (r ),

with σ [τ ] = ±1 describing the projection low-energy states
on the A(B) sublattice (at K±) for spin s = ±1 . Substituting
in Eq. (4) and performing a series expansion around the in-
equivalent Dirac points K± = ±Kk̂x , one obtains the effective

interaction V̂P = �
†(r )V̂P (r )�(r ) [69], with

V̂P (r ) = (�τzσzsz + g0τxσx + g1τyσysz)fP (r ), (6)

to leading order in k/K , and where we omitted a scalar
term (see SM [44]). σ and τ denote Pauli matrices acting
on sublattice and valley degrees of freedom, respectively,
and fP (r ) ∝ δ(r − rP ) describes the spatial profile of the
adatom potential. The first term derives from the NNN hopping
� = 3

√
3t ′′2 [30]. The remaining terms are scalar and spin-orbit

interactions connecting valleys, with strengths g0 = 3(t ′3 − t ′1)
and g1 = 3

√
3t ′′1 , respectively. For p-outer-shell adatoms t ′′1 =

t ′′2 [see Eq. (5)] and thus g1 = �, i.e., intra- and intervalley

spin-orbit scattering processes must be considered on equal

footing. Based on general arguments for disordered zero-gap
semiconductors, one expects that the mixing of states at
inequivalent degeneracy points is detrimental for the topo-
logical phase [70–72]. An estimation using DFT-optimized
parameters gives g0 = 0.41 eV and g1 = � = −0.11 eV at
ǫ = 0. Such a dominance of intervalley processes in the coarse-
grained description is a strong indication that the topological
gap displayed by Tl-graphene supercells (Fig. 1) will be fragile
in a disordered scenario, which would naturally explain the
negative experimental results [31–35]. This idea is reinforced
by the fact that electrons in graphene are very sensitive to valley
mixing processes with an origin in short-range impurities, as
the respective Friedel oscillations are known to decay as 1/r

at large distances (as opposed to the 1/r2 law from intravalley
scattering [68]).

Real-space quantum transport study. To investigate the
implications of the complex structure of the effective adatom
potential, we have carried out transport calculations within
the Landauer-Büttiker framework. In the QSH regime, a pair
of counterpropagating gapless edge states protected from
elastic backscattering emerge at the interfaces to vacuum
[Fig. 3(a)] [30]. To probe the robustness of the extrinsic
QSH insulating phase and its concomitant helical edge states,
we calculated the two-terminal conductance of large arm-
chair nanoribbons (width W = 313.6 nm, and length L =
298.2 nm) with randomly distributed adatoms connected to
pristine graphene leads. The central channel contains in excess
of 3.5 million atoms and efficient recursion techniques are
employed to solve a system of this large size [44]. The
smoking gun for the topologically protected edge states is
the emergence of quantized conductance G = 2e2/h with a
plateau width proportional to the SOC strength [59,73]. To
probe the experimentally relevant adatom coverages would
require prohibitively large computational domains, in order to
resolve the typically small spin-orbit gaps �E ≈ 0.3n (eV),
where n is the adatom coverage. To overcome this difficulty,
we rescaled uniformly the effective hoppings tn → rtn with
r = 10. The main findings are summarized in Fig. 3. When
only the intrinsic-type SOC term is included (t ′′2 ), the two-
terminal conductance exhibits a plateau at small energies with
G = 2e2/h [Fig. 3(b) (black dots)]. The variance �G is found
to be zero up to numerical accuracy. Such a perfectly quantized
effect shows that the nanoribbon has been transformed into a
QSH insulator. The plateau width precisely saturates the upper
bound �ESOC � 2n|�|, which is the topological gap obtained
by Weeks et al. [26]. However, the plateau shrinks when t ′1 is
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FIG. 3. Topological properties of nanoribbon and bulk graphene with random nonmagnetic heavy adatoms. (a) Schematic of a two-terminal
device in the QSH regime; two edge states with opposite spins contribute with G = 2e2/h. (b) Energy dependence of the conductance for two
distinct adatom-graphene models (1% coverage). Parameters: t = 2.7 eV, t ′

1 = −2.4 eV, and t ′′
2 = −0.23 eV. (c) Conductance curve when a

single vacancy is added to the adatom-decorated nanoribbon. Same parameters as in (b). The conductance of the defected nanoribbon in the
absence of adatoms is also shown (dashed line). (d) Coverage dependence of the conductance showing the degradation of the quantized plateau.
The behavior of fluctuations is shown in the inset. Parameters: Same as in (b) and (c) and t ′

3 = −1.0 eV. (e) Disorder-averaged Chern number
as a function of adatom coverage for realistic spin-orbit coupling (t ′′

2 = 0.01t) and selected values of t1 and t3. (f) Coverage dependence of
C̄ when all the interactions are “turned on” using DFT base values: t1/t = −0.12–0.01i, t ′

2/t = −0.07–i0.01, and t3/t = −0.17. Fitting to
C̄(n) = tanh(n/n∗) yields a critical adatom coverage n∗ ≈ 0.01. The inset shows the dependence of C̄ with t ′

1 indicating a fast closing of the
topological gap upon increasing NN hopping correction. Twenty-four independent adatom configurations were used in (b) and (c), and 100 in
(d). For simplicity, adatom-induced hoppings are fixed to their values at the band center, tn(ǫ = 0), in all calculations.

turned on (blue dots), indicating a closing of the topological
gap. This effect is accompanied by significative fluctuations
�G ≈ ±0.1e2/h, showing that states delocalized through the
nanoribbon contribute now to the electronic transport. This
striking decay of helical edge states into the bulk is confirmed
by the numerical evaluation of the spin-polarized bond current
density maps; see SM [44]. The remaining adatom interactions
affect the QSH phase in two different ways: (i) The imaginary
NN hopping shifts the conductance plateau (not shown) and
(ii) the hopping t ′3 enlarges the central plateau and increases

the fluctuations.
We now provide compelling evidence that QSH phases

induced by random dilute adatoms are especially fragile in truly
disordered scenarios, where additional sources of scattering
are unavoidable. To this end, we introduce a topological defect
(vacancy) in the nanoribbon, by cutting all bonds adjacent to
one carbon atom. Vacancies introduce (quasi)localized states
at zero energy strongly impacting the graphene electronic
properties [74–79]. Given our choice of a metallic armchair
nanoribbon, we locate the vacancy on a site with a finite
density of states [80] . This choice guarantees that the vacancy
works as a resonant scatter (introducing midgap states), leading
to a strong suppression of the conductance at low energy,
G → 0 as ε → 0 [Fig. 3(c)]. Adding a small coverage of
idealized adatoms with only NNN hopping (t ′′2 ) gives rise to
the expected quantization of the conductance, as the helical
edge states resulting from the SOC enhancement can perfectly
avoid the vacancy (no backscattering). Quite strikingly, when
a NN hopping correction t ′1 ≈ 10t ′′2 (typical of Tl adatoms in
rows 5 and 6 of the periodic table) is turned on, the conductance

acquires its basic shape prior to adatom decoration, unambigu-
ously demonstrating the inherent fragility of the QSH phase
due to the activation of intervalley processes. The dependence
with the adatom coverage is shown in Fig. 3(d), which also
shows the conductance at low energies is further degraded
when t ′1 and t ′3 are taken simultaneously.

Chern number in real space. At this stage, we have firmly
established that edge states in adatom-decorated graphene are
intrinsically unstable due to hitherto neglected hoppings t ′1
and t ′3 (Fig. 2). As shown by our multiscale theory bridging
advanced first-principles calculations and accurate TB models,
such hoppings are typically one order of magnitude larger than
the chiral term inducing the topological phase (t ′′2 ) . To investi-
gate the onset of the topological phase transition in more detail,
we evaluate the spin Chern number of bulk states, defined by
Cs = C↑ − C↓, where C↑ = −C↓ ≡ C is the first Chern integer
[81]. To compute C for disordered configurations of adatoms,
we employ an efficient gauge-invariant approach developed in
Refs. [82,83]. This allows us to assess the topological order
for realistic TB parameters (i.e., no tn rescaling is required).
In Fig. 3(e), we show the dependence of the average Chern
number C̄ on the adatom coverage. The robustness of C̄ with
respect to t ′′1 and its quick suppression at low concentrations
when t ′1 and t ′3 are turned on is in perfect agreement with the pre-
vious conclusions based on quantum transport simulations in
nanoribbon geometry. When all adatom-induced interactions
are considered on equal footing, the onset to the transition to
a topologically trivial phase is found to occur around 5% for
typical values of the parameters. When approaching 1%–2%
coverage, the fluctuations are increasingly larger, predicting
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the closing of the topological gap in the relevant experimental
regime. The strong dependence of C̄ on the adatom coverage
is reminiscent of Anderson topological insulators [84], for
which the character of the insulating ground state is known
to critically depend on the disorder strength.

Our findings have several important consequences.
The absence of topological gap signatures on recent
measurements in adatom-decorated graphene [31–35] is
naturally explained by valley mixing processes beyond
simple model Hamiltonians. The adatom-induced intervalley
scattering uncovered in this Rapid Communication can be
mitigated by increasing the spatial range of the interactions
mediated by the adsorbate, thereby providing a possible path
towards the engineering of a quantum spin Hall insulator in
graphene, i.e., its decoration with dilute heavy nanoparticles.
These results highlight the importance of seamless multiscale
approaches bridging first-principles parametrized model
Hamiltonians and large-scale quantum transport calculations
for the predictive modeling of adatom-host systems.

The data underlying this Rapid Communication are avail-
able from the Figshare database [85].
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