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Abstract. The gas-phase reaction of alkenes with ozone is
known to produce stabilised Criegee intermediates (SCIs).
These biradical/zwitterionic species have the potential to act
as atmospheric oxidants for trace pollutants such as SO,
enhancing the formation of sulfate aerosol with impacts on
air quality and health, radiative transfer and climate. How-
ever, the importance of this chemistry is uncertain as a con-
sequence of limited understanding of the abundance and at-
mospheric fate of SCIs. In this work we apply experimental,
theoretical and numerical modelling methods to quantify the
atmospheric impacts, abundance and fate of the structurally
diverse SCIs derived from the ozonolysis of monoterpenes,
the second most abundant group of unsaturated hydrocarbons
in the atmosphere. We have investigated the removal of SO,
by SCIs formed from the ozonolysis of three atmospherically
important monoterpenes («-pinene, S-pinene and limonene)
in the presence of varying amounts of water vapour in large-
scale simulation chamber experiments that are representative
of boundary layer conditions. The SO, removal displays a
clear dependence on water vapour concentration, but this de-
pendence is not linear across the range of [H>O] explored. At
low [H,O] a strong dependence of SO; removal on [H,O] is
observed, while at higher [H,O] this dependence becomes
much weaker. This is interpreted as being caused by the pro-
duction of a variety of structurally (and hence chemically)
different SCIs in each of the systems studied, which dis-

played different rates of reaction with water and of unimolec-
ular rearrangement or decomposition. The determined rate
constants, k(SCI4+H;0), for those SCIs that react primarily
with HyO range from 4 to 310 x 10~ cm? s~!. For those
SClIs that predominantly react unimolecularly, determined
rates range from 130 to 240s~!. These values are in line
with previous results for the (analogous) stereo-specific SCI
system of syn-/anti-CH3CHOQO. The experimental results are
interpreted through theoretical studies of the SCI unimolec-
ular reactions and bimolecular reactions with H,O, charac-
terised for «-pinene and B-pinene at the M06-2X/aug-cc-
pVTZ level of theory. The theoretically derived rates agree
with the experimental results within the uncertainties. A
global modelling study, applying the experimental results
within the GEOS-Chem chemical transport model, suggests
that >97 % of the total monoterpene-derived global SCI bur-
den is comprised of SCIs with a structure that determines that
they react slowly with water and that their atmospheric fate
is dominated by unimolecular reactions. Seasonally averaged
boundary layer concentrations of monoterpene-derived SCIs
reach up to 1.4 x 10*cm™ in regions of elevated monoter-
pene emissions in the tropics. Reactions of monoterpene-
derived SCIs with SO, account for <1 % globally but may
account for up to 60 % of the gas-phase SO, removal over ar-
eas of tropical forests, with significant localised impacts on
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the formation of sulfate aerosol and hence the lifetime and
distribution of SO;.

1 Introduction

Chemical oxidation processes in the atmosphere exert a ma-
jor influence on atmospheric composition, leading to the re-
moval of primary emitted species and the formation of sec-
ondary products. In many cases either the emitted species
or their oxidation products negatively impact air quality and
climate (e.g. ozone, which is also a potent greenhouse gas).
These reactions can also transform gas-phase species to the
condensed phase, forming secondary aerosol that again can
be harmful to health and can both directly and indirectly in-
fluence radiative transfer and hence climate (e.g. SO, oxida-
tion leading to the formation of sulfate aerosol).

Tropospheric gas-phase oxidants include the OH radi-
cal, ozone, the NOs3 radical and halogen atoms. Stabilised
Criegee intermediates (SCIs), or carbonyl oxides, have been
identified as another potentially important oxidant in the tro-
posphere (e.g. Cox and Penkett, 1971; Mauldin III et al.,
2012). SCIs are thought to be formed in the atmosphere pre-
dominantly from the reaction of ozone with unsaturated hy-
drocarbons, though other processes may be important un-
der certain conditions, e.g. alkyl iodide photolysis (Grave-
stock et al., 2010), dissociation of the DMSO peroxy radi-
cal (Asatryan and Bozzelli, 2008). Laboratory experiments
and theoretical calculations have shown SCIs to oxidise SO»
(e.g. Cox and Penkett, 1971; Welz et al., 2012; Taatjes et
al., 2013), organic (Welz et al., 2014) and inorganic (Fore-
man et al., 2016) acids (Vereecken, 2017) and a number of
other important trace gases found in the atmosphere, as well
as forming adducts with NO, (Taatjes et al., 2014; Vereecken
and Nguyen, 2017; Caravan et al., 2017). Measurements in a
boreal forest (Mauldin III et al., 2012) and at a coastal site
(Berresheim et al., 2014) have both identified a missing pro-
cess (in addition to a reaction with OH) that oxidises SO to
H>SOy4, potentially arising from SCI reactions.

Here, we present results from a series of experimental
studies into SCI formation and reactions, carried out un-
der atmospheric boundary layer conditions in the Euro-
pean Photochemical Reactor facility (EUPHORE), Valencia,
Spain. We examine the ozonolysis of three monoterpenes
with very different structures (and hence reactivities with OH
and ozone): «-pinene (with an endocyclic double bond), 8-
pinene (with an exocyclic double bond) and limonene (with
both an endo- and exocyclic double bond). We observe the
removal of SO, in the presence of each alkene—ozone sys-
tem as a function of water vapour concentration. This allows
us to derive relative SCI kinetics for reaction with H,O, SO,
and unimolecular decomposition. Further, we calculate ab-
solute unimolecular rates and bimolecular reaction rates with
H»O for all ¢-pinene- and B-pinene-derived SCIs at the M06-
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Scheme 1. Simplified generic mechanism for the reaction of
Criegee intermediates (CIs) formed from alkene ozonolysis.

2X/aug-cc-pVTZ level of theory. A global modelling study,
using the GEOS-Chem global chemical transport model, is
performed to assess global and regional impacts of the chem-
ical kinetics of monoterpene SCIs determined in this study.

1.1 Stabilised Criegee intermediate kinetics

Ozonolysis of an unsaturated hydrocarbon produces a pri-
mary ozonide that rapidly decomposes to yield pairs of
Criegee intermediates (ClIs) and carbonyls (Johnson and
Marston, 2008). The population of ClIs are formed with a
broad internal energy distribution, giving both chemically ac-
tivated and stabilised forms. Chemically activated CIs may
undergo collisional stabilisation to an SCI, unimolecular de-
composition or isomerisation. SCIs can have sufficiently
long lifetimes in which to undergo bimolecular reactions
(Scheme 1).

The predominant atmospheric fate for the simplest SCI,
CH,O0Q0, is reaction with water vapour, which likely occurs
with the dimer ((H20),) (e.g. Berndt et al., 2014; Newland
et al., 2015a; Chao et al., 2015; Lewis et al., 2015; Lin et
al., 2016a). For larger SCI, both experimental (Taatjes et al.,
2013; Sheps et al., 2014; Newland et al., 2015a; Huang et
al., 2015) and theoretical (Kuwata et al., 2010; Anglada et
al., 2011; Anglada and Sole, 2016; Vereecken et al., 2017)
studies have shown that their kinetics, in particular reaction
with water, are highly structure dependent. The significant
double-bond character exhibited in the zwitterionic configu-
rations of mono-substituted SCIs leads to two distinct chem-
ical forms: syn-SCIs (i.e. those where an alkyl substituent
group is on the same side as the terminal oxygen of the
carbonyl oxide moiety) and anti-SCIs (i.e. with the termi-
nal oxygen of the carbonyl oxide moiety on the same side
as a hydrogen group). The two conformers of CH3CHOO,
which are both mono-substituted, display these properties.
This difference in conformer reactivities has been predicted
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theoretically (Ryzhkov and Ariya, 2004; Kuwata et al., 2010;
Anglada et al., 2011; Lin et al., 2016a) and was subsequently
confirmed experimentally (Taatjes et al., 2013; Sheps et al.,
2014) for the two CH3CHOO conformers. The significantly
faster reaction of anti-CH3CHOO with water is driven by the
higher potential energy of this isomer, while more stable SCI,
with a methyl group in syn-position, such as syn-CH3;CHOO
or (CH3)2COQ, react orders of magnitude more slowly with
water.

To date, the effects of the water dimer, (H,O); on
SCI removal have only been determined experimentally for
CH,OO0 (Berndt et al., 2014; Chao et al., 2015; Lewis et al.,
2015; Newland et al., 2015a; Sheps et al., 2017; Liu et al.,
2017) and anti-CH3CHOO (Lin et al., 2016b). Theoretical
calculations (Vereecken et al., 2017) have predicted the ra-
tio of the SCI+ (H20); : SCI 4+ H,O rate constants, k5/k3,
of larger and more substituted SCI to be of a similar order of
magnitude as for CH,OO (i.e. 1.5-2.5 x 10%).

SCIs can also undergo unimolecular isomerisation or de-
composition in competition with bimolecular reactions. This
is likely to be a significant atmospheric sink for syn-SCls be-
cause of their slow reaction with water vapour (e.g. Huang et
al., 2015). Unimolecular reactions of syn-CI/-SCls are domi-
nated by a 1,4-H shift, forming a vinyl hydroperoxide (VHP)
intermediate (Niki et al., 1987; Rickard et al., 1999; Martinez
and Herron, 1987; Johnson and Marston, 2008; Kidwell et
al., 2016). Decomposition of the VHP formed in this process
is an important non-photolytic source of OH, HO; and RO;
in the atmosphere (Niki et al., 1987; Alam et al., 2013; Kid-
well et al., 2016), which can also lead to secondary organic
aerosol formation (Ehn et al., 2014). Unimolecular reactions
of the anti-CI/SCIs are thought to be dominated by a 1,3-
ring closure, the acid ester channel, in which the CI/SCI de-
composes, through rearrangement to a dioxirane intermedi-
ate, producing a range of daughter products and contributing
to the observed overall HO, radical yield (Kroll et al., 2002;
Johnson and Marston, 2008; Alam et al., 2013).

Alkene + O3 <5 $SCI + (1 — ¢) CI + RCHO R1)
SCI+ S0, 2 505 + RCHO (R2)
SCI+H,O ﬁ) products (R3)
SCI X4 products (R4)
SCI + acid ﬁ) products (RS)
SCI+ (H20); 2% products (R6)

Decomposition of the simplest SCI, CH,0O0, is slow
(<10s~!) and is not likely to be an important sink in
the troposphere (e.g. Newland et al., 2015a; Chhantyal-
Pun et al.,, 2015). This decomposition occurs primarily
via rearrangement through a “hot” acid species, which
represents the lowest accessible decomposition channel
(Gutbrod et al., 1996; Alam et al., 2011; Chen et al.,
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2016). However, recently determined unimolecular re-
action rates of larger syn-SCIs are considerably faster.
Newland et al. (2015a) reported unimolecular reaction
rate constants for syn-CH3CHOO of 348 (+332)s~! and
for (CH3),COO of 819 (+190)s~!' (assuming k(syn-
CH3CHOO+S0,) =29 x 107" ecm3s~!  (Sheps et al.,
2014) and k((CH3)2COO +S0;) = 1.3 x 10~1%cm? 7!
(Huang et al., 2015), respectively). Smith et al. (2016) mea-
sured the unimolecular decomposition rate of (CH3),COO
to be 269 (£82)s~! at 283 K, increasing to 916 (£56)s~!
at 323K and suggesting the rate to be fast and highly
temperature dependent. Novelli et al. (2014) estimated a
significantly slower decomposition rate for syn-CH3;CHOO
of 20 (3-=30)s~! from direct observations of OH formation,
while Fenske et al. (2000) estimated the decomposition
rate of CH3CHOO (i.e. a mix of syn- and anti-conformers)
produced from ozonolysis of trans-but-2-ene to be 765~
(accurate to within a factor of 3).

1.2 Monoterpene ozonolysis

Monoterpenes are volatile organic compounds (VOCs) with
the general formula CjopHje¢ and are emitted by a wide
range of vegetation, but particularly from boreal forests.
Total global monoterpene emissions are estimated to be
95 (+3)Tgyr~! (Sindelarova et al., 2014) — roughly 13 %
of total non-methane biogenic VOC emissions. Monoter-
pene emissions are dominated by a-pinene, which accounts
for roughly 34 % of the total global emissions, while S-
pinene and limonene account for 17 and 9 % respectively
(Sindelarova et al., 2014). Monoterpenes (mainly «-pinene
and limonene) are also present in indoor environments, in
significant amounts where cleaning products and air fresh-
eners are in routine use (of the order of 100s of ppbv) (e.g.
Singer et al., 2006a, b; Sarwar and Corsi, 2007), and where
their ozonolysis products can affect indoor chemistry and
health (e.g. Rossignol et al., 2013; Shallcross et al., 2014).
Monoterpenes are highly reactive due to the presence of
(often multiple) double bonds. The oxidation of monoter-
penes yields a wide range of multi-functional gas-phase and
aerosol products. This process can be initiated by OH and
NO3 radicals or by O3, with ozonolysis having been shown
to be particularly efficient at generating low-volatility prod-
ucts that can form SOA, even in the absence of sulfuric acid
(e.g. Ehn et al., 2014; Kirkby et al., 2016). These highly
oxygenated secondary products have received considerable
attention in recent years because of their role in affecting
the climate through absorption and scattering of solar radi-
ation (the direct aerosol effect). They can also increase cloud
condensation nuclei concentrations, which can change cloud
properties and lifetimes (the indirect aerosol effect). They
have also been shown to have a wide range of deleterious
effects on human health (e.g. Poschl and Shiraiwa, 2015).
The ozonolysis reaction for monoterpenes is expected to
follow a similar initial process to that of smaller alkenes,
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with cyclo-addition at a double bond giving a primary
ozonide (POZ), followed by rapid decomposition of the POZ
to yield a CI and a carbonyl (Scheme 1). Stabilisation of the
large POZs formed in monoterpene ozonolysis is expected
to be negligible (Nguyen et al., 2009a). However, a major
difference in ozonolysis at endocyclic bonds is that, on de-
composition of the POZ, the carbonyl oxide and carbonyl
moieties are tethered as part of the same molecule, provid-
ing the potential for further interaction of the two. These
can react together to form secondary ozonides (SOZ), which
may be stable for several hours (Beck et al., 2011). How-
ever, while this has been shown to be potentially the major
fate in the atmosphere for SCIs derived from sesquiterpenes
(Cy5Hp4) (e.g. Nguyen et al., 2009b; Beck et al., 2011; Yao
et al., 2014), formation of SOZ is predicted to be small for
monoterpene-derived SCIs because of the high ring strain
caused by the tight cyclisation (e.g. Nguyen et al., 2009b).
Chuong et al. (2004) predicted formation of a SOZ to become
the dominant atmospheric fate for SCIs formed in the ozonol-
ysis of endocyclic alkenes with a carbon number between 8
and 15, while Vereecken and Francisco (2012) suggested that
internal SOZ formation is likely to be limited to product rings
containing six or more carbons due to ring strain.

No studies have yet directly determined the reaction rates
of the large SCIs produced from monoterpene ozonolysis
with SO, (or any other trace gases). This is owing to the
complexities of synthesising and measuring large SCI. How-
ever, Ahrens et al. (2014) concluded that the reaction of
the C9-SCI formed in B-pinene ozonolysis with SO, is as
fast as that determined by Welz et al. (2012) and Taat-
jes et al. (2013) for CH,00 and CH3CHOO respectively
(ca. 4 x 10~ cm? s~1) by fitting to the decay of SO, in the
presence of the ozonolysis reaction. Mauldin III et al. (2012)
calculated significantly slower reaction rates for an addi-
tional oxidant (assumed to be SCI) derived from «-pinene
and limonene ozonolysis, with k(SCI+ SO,) determined
to be 6 x 10713 and 8 x 1073 cm3s~! for a-pinene and
limonene-derived SCIs respectively. However, it seems likely
that the rates calculated by Mauldin III et al. (2012) may be
substantially underestimated due to the assumption of a very
long SCI lifetime (0.2 s) in experiments that were performed
at 50 % RH. The calculated rates scale linearly with SCI life-
time, and based on reaction rates of smaller SCIs with H;O
(reported since the Mauldin III et al. work, e.g. Taatjes et
al., 2013), it seems likely that the lifetime of the SCI in their
experiments would have been more like 0.1-2 x 1072 s, in-
creasing the calculated rate constants by more than an order
of magnitude and bringing them into much closer agreement
with the rates reported by Ahrens et al. (2014).

Unimolecular reactions of the monoterpene SCls are ex-
pected to proceed rapidly through the VHP route if hydrogen
is available for a 1,4-H shift. Those SCIs that cannot undergo
this rearrangement may undergo unimolecular reactions via
the formation of the dioxirane intermediate, but this is ex-
pected to be a much slower process (Nguyen et al., 2009a). In
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contrast to smaller SCI, it has been observed experimentally
and predicted theoretically that the VHP route will mainly
lead to rearrangement into an acid (also yielding an OH rad-
ical) rather than decomposition of the molecule (e.g. Ma et
al., 2008; Ma and Marston, 2008). As for the smaller alkenes,
monoterpene ozonolysis has been shown to be a source of
HO, (e.g. Paulson et al., 1997; Alam et al., 2013), predomi-
nantly via the VHP rearrangement. The MCMv3.3.1 (Jenkin
et al., 2015) applies OH yields of 0.80, 0.35 and 0.87 for a-
pinene, B-pinene and limonene respectively.

1.2.1 «-pinene-derived SCI

Decomposition of the a-pinene POZ yields four different Cyg
Criegee intermediates (Scheme 2: CI-1a, 1b, 2a, 2b), with
the carbonyl oxide moiety at one end and a carbonyl group
at the other. Here, CI-1 is a mono-substituted CI for which
both syn- (1a) and anti-conformers (1b) exist while the other,
CI-2, is disubstituted and two syn-conformers (2a and 2b)
exist for it. Ma et al. (2008) infer a relative yield of 50 % for
the two basic CIs formed, based on the observation that nor-
pinonic acid yields from the ozonolysis of «-pinene and an
enone, which upon ozonolysis yields CI-1, are almost indis-
tinguishable.

The total SCI yield from «-pinene was determined to be
0.15 (£0.07) by Sipilé et al. (2014) in indirect experiments
measuring the production of HySO4 from SO, oxidation in
the o-pinene ozonolysis system. Drozd and Donahue (2011)
also determined a total SCI yield of about 0.15 at 740 Torr
from measuring the loss of hydrofluoroacetone in ozonolysis
experiments in a high-pressure flow system. The MCMv3.3.1
(Jenkin et al., 1997, 2015; Saunders et al., 2003) applies
a value of 0.20 based on stabilisation of only the mono-
substituted CI-1.

1.2.2 B-pinene-derived SCI

B-pinene ozonolysis yields two distinct conformers of the
nopinone C9-CI (Scheme 3: CI-3 and CI-4), which differ in
orientation of the carbonyl oxide group, and CH,00. CI-3
and CI-4 are formed in roughly equal proportions with very
little interconversion between the two (Nguyen et al., 2009a).
The difference in the chemical behaviour of CI-3 and CI-4,
which were often not distinguished in earlier studies, arises
from the inability of the carbon attached to the 4-membered
ring to undergo the 1,4-H shift that allows unimolecular de-
composition via the VHP channel. This was noted in Rickard
et al. (1999) as being a reason for the considerably lower OH
yield (obtained via the VHP route) from S-pinene ozonolysis
compared to that of «-pinene. This difference leads to con-
trasting unimolecular decomposition rates for the two Cls,
with Nguyen et al. (2009a) predicting a loss rate of ca. 50 s~
for CI-3 (via a VHP) and ca. 1 s~! for CI-4 (via ring closure
to a dioxirane). This result is qualitatively consistent with
the experimental work of Ahrens et al. (2014), who deter-
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Scheme 2. Mechanism of formation of the two Criegee intermediates (CIs) from a-pinene ozonolysis.

mine a ratio of 85:15 for the abundance of SCI-4:SCI-3
about 10s after the initiation of the ozonolysis reaction, as a
consequence of the much faster decomposition rate of SCI-
3. The potential for bimolecular reactions to compete with
decomposition of SCI-3 is very different from the potential
for bimolecular reactions to compete with decomposition of
SCI-4.

Nguyen et al. (2009a) theoretically calculate a total SCI
yield from B-pinene ozonolysis of 42 %, consisting of 16.2 %
SCI-3, 20.6 % SCI-4 and 5.1 % CH200. Ahrens et al. (2014)
assume an equal yield of CI-3 and CI-4 (45 %) with a 10 %
yield of CH>00; 40 % of the total C9-CI are calculated to
be stabilised at 1 atm. If all of the CH,OO is assumed to be
stabilised when it is formed (e.g. Nguyen et al., 2009a), this
gives a total SCI yield of 46 %. Earlier experimental stud-
ies have tended to determine lower total SCI yields, with
Hasson et al. (2001) reporting a total SCI yield of 0.27
from measured product yields (almost entirely nopinone) and
Hatakeyama et al. (1984) reporting a total SCI yield of 0.25.
Winterhalter et al. (2000) determined a yield of 0.16 (£0.04)
for excited CH,OO from B-pinene ozonolysis, obtained via
the nopinone yield and 0.35 for the stabilised C9-CI, giving
a total SCI yield of 0.51 of all the CH>OO is assumed to be
stabilised. Also, experimental studies have tended to report
higher CH,OO0 yields (determined from measured nopinone
yields) than theoretical studies. Nguyen et al. (2009a) note
that this could be because nopinone can also be formed in
bimolecular reactions of SCI-4, hence experimental studies
may overestimate CH,OO production. The MCMv3.3.1 in-
corporates a total SCI yield of 0.25 from B-pinene ozonoly-
sis, with a yield of stabilised C9-CI of 0.102 and a CH,OO0
yield of 0.148.

1.2.3 Limonene-derived SCI
Limonene has two double bonds with which ozone can re-
act. Theory suggests that reaction at the endocyclic bond is

more likely: Baptista et al. (2011) calculate the reaction at
the endocyclic bond to be 84-94 % (dependent on the level

www.atmos-chem-phys.net/18/6095/2018/

of theory applied). Zhang et al. (2006) suggest the reaction
at the endocyclic double bond to be roughly 25 times faster
than at the exocyclic bond, i.e. leading to a branching ratio
of ca. 96 % reaction at the endobond and the current [IUPAC
recommendation (IUPAC, 2013) suggests about 95 % of the
primary ozone reaction to be at the endobond. Leungsakul et
al. (2005) reported a best fit to measurements from chamber
experiments by assuming an 85 % reaction at the endocyclic
bond and 15 % at the exocyclic bond.

Ozone reaction at the endocyclic bond of limonene pro-
duces four different Cjg CIs (Scheme 4: CI-5a, 5b, 6a,
6b). Similarly to CI-1 and CI-2 from «-pinene, CI-5 is
a mono-substituted CI for which both syn- (5a) and anti-
conformers (5b) exist, while the other, CI-6, is disubsti-
tuted, for which two syn-conformers (6a and 6b) exist. Le-
ungsakul et al. (2005) determined a total SCI yield from
limonene ozonolysis of 0.34, consisting of CH,OO (0.05),
CI-7 (0.04), CI-5 (0.15) and CI-6 (0.11). Sipil4 et al. (2014)
determined a total SCI yield of 0.27 (£0.12) from indirect
experiments measuring the production of H,SO4 from SO,
oxidation in the presence of the limonene—ozone system. The
MCMv3.3.1 only describes reaction with ozone at the en-
docyclic double bond and recommends a total SCI yield of
0.135 with stabilisation of only the mono-substituted CI-5.

2 Experimental study
2.1 Experimental approach

The EUPHORE facility is a 200m® simulation chamber
used primarily for studying reaction mechanisms under at-
mospheric boundary layer conditions. Further details of the
chamber set-up and instrumentation are available elsewhere
(Becker, 1996; Alam et al., 2011), and a detailed account of
the experimental procedure, summarised below, is given in
Newland et al. (2015a).

Experiments comprised time-resolved measurements of
the removal of SO, in the presence of the monoterpene—

Atmos. Chem. Phys., 18, 6095-6120, 2018
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ozone system as a function of humidity. SO, and O3 abun-
dance were measured using conventional fluorescence (re-
ported precision £1.0ppbv) and UV absorption monitors
(reported precision £4.5 ppbv), respectively; alkene abun-
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dance was determined via FTIR spectroscopy. Experiments
were performed in the dark (i.e. with the chamber hous-
ing closed; j(NOy) < 1070 s’l), at atmospheric pressure
(ca. 1000 mbar) and temperatures between 287 and 302 K.
The chamber is fitted with large horizontal and vertical fans
to ensure rapid mixing (ca. 2min). Chamber dilution was
monitored via the first-order decay of an aliquot of SFg,
added prior to each experiment. Cyclohexane (ca. 75 ppmv)
was added at the beginning of each experiment to act as an
OH scavenger, such that SO, reaction with OH was calcu-
lated to be <1 % of the total chemical SO, removal in all
experiments.

The experimental procedure, starting with the chamber
filled with clean scrubbed air, comprised addition of SFg and
cyclohexane, followed by water vapour, O3 (ca. 500 ppbv)
and SO, (ca. 50ppbv). A gap of Smin was left prior
to addition of the monoterpene to allow complete mix-
ing. The reaction was then initiated by the addition of
the monoterpene (ca. 400 ppbv for «-pinene and B-pinene,
ca. 200 ppbv for limonene), and reagent concentrations fol-
lowed for roughly 30—60 min; ca. 30-90 % of the monoter-
pene was consumed after this time, dependent on the reaction
rate with ozone. Four «-pinene + Os, five 8-pinene + O3 and
five limonene + O3 experiments were performed in total, as
a function of [H,O]. Each individual run was performed at
a constant humidity, with humidity varied to cover the range
of [H0] =0.1-19 x 10'® molecules cm 3, corresponding to
an RH range of 0.1-28 % (at 298 K). Measured increases
in [SO;] agreed with measured volumetric additions across
the SO, and humidity ranges used in the experiments (New-
land et al., 2015a). The experimental raw data are avail-

www.atmos-chem-phys.net/18/6095/2018/



M. J. Newland et al.: The atmospheric impacts of monoterpene ozonolysis 6101

able at https://doi.org/10.15124/4e9cd832-9cce-41c8-8335-
c88cf32fe244 (Newland et al., 2013).

2.2 Analysis

A range of different SCIs are produced from the ozonoly-
sis of each of the three monoterpenes (see Schemes 2—4),
each with their own distinct chemical behaviour (i.e. yields,
reaction rates); it is therefore not feasible (from these exper-
iments) to obtain data for each SCI independently. Conse-
quently, for analytical purposes we necessarily treat the SCI
population in a simplified (lumped) manner — see Sect. 2.2.2.

SCIs are assumed to be formed in the ozonolysis reac-
tion with a yield ¢ (Reaction R1). They can then react with
SO;, H>0, acids formed in the ozonolysis reaction or with
other species present or they can undergo unimolecular de-
composition under the experimental conditions applied (Re-
actions R2-R5). A fraction of the SCIs produced reacts with
SO;. This fraction (f) is the loss rate of the SCIs to SO,
(k2[SO3]) compared to the sum of the total loss processes for
the SCIs (Eq. 1):

_ k2[SO2]
k> [SO2] + k3 [H2O] + kg + ks[acid] +L°

f 1
Here, L accounts for the sum of any other chemical loss
processes for SCIs in the chamber. With the exception of
reaction with acids these loss processes are expected to be
negligible, as discussed later. After correction for dilution
and neglecting other (non-alkene) chemical sinks for O3, the
following equation is derived. Corrections include reaction
with HO, (also produced directly during alkene ozonolysis;
Alam et al., 2013; Malkin et al., 2010), which was indicated
through model calculations to account for <0.5 % of ozone
loss under all the experimental conditions.

dSO, _
405 of 2

From Eq. (2), regression of the loss of ozone (dO3) against
the loss of SO, (dSO») for an experiment at a given RH de-
termines the product f¢ at a given point in time. This quan-
tity will vary through the experiment as SO is consumed and
other potential SCIs co-reactants are produced, as predicted
by Eq. (1). A smoothed fit was applied to the experimental
data for the cumulative consumption of SO, and O3, ASO;
and AOs, (as shown in Fig. 2) to determine dSO;,/d0O3 (and
hence f¢) at the start of each experiment, for use in Eq. (2).
The start of each experiment (i.e. when [SO>] ~ 50 ppbv)
was used, as this corresponds to the greatest rate of produc-
tion of the SCI and hence the largest experimental signals
(i.e. greatest O3 and SO, rate of change; greatest precision),
and is the point at which the SCI4 SO, reaction has the
greatest magnitude compared with any other potential loss
processes for either reactant species (see discussion below).

Other potential fates for SCIs include reaction with ozone
(Kjaergaard et al., 2013; Vereecken et al., 2014, 2015; Wei
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Figure 1. ASO; vs. AO3 during excess-SOp experiments
([HoO] <5 x 1015 cm_3). The gradient determines the minimum
SClI yield (¢min)-

et al., 2014; Chang et al., 2018), with other SCIs (Su et al.,
2014; Vereecken et al., 2014), carbonyl products (Taatjes et
al., 2012), acids (Welz et al., 2014) or with the parent alkene
(Vereecken et al., 2014; Decker et al., 2017). Sensitivity anal-
yses using the most recent theoretical predictions (Vereecken
et al., 2015) indicate that the reaction with ozone is not sig-
nificant under any of our experimental method, accounting
for less than 1.5 % of SCI loss for anti-SCIs (based on anti-
CH3CHOO) at the lowest RH (worst case) experiment. Gen-
erally, SCI loss to ozone is calculated to be < 1% for all SCI.
Summed losses from reaction with SCI (self-reaction), car-
bonyls and alkenes are likewise calculated to account for
< 1% of the total SCI loss under the experimental conditions
applied.

CH,O0 and CH3CHOO have been shown to react
rapidly (k =1-5x 107'%cm3s~!) with formic and acetic
acid (Welz et al., 2014). In ozonolysis experiments, Sipild
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Figure 2. Cumulative consumption of SO, as a function of cumula-
tive consumption of O3 and ASO; versus AO3 for the ozonolysis of
a-pinene, B-pinene and limonene in the presence of SO, at a range
of water vapour concentrations, from 1 x 1015 t0 1.9 x 1017 ecm 3.
Symbols are experimental data, corrected for chamber dilution.
Lines are smoothed fits to the experimental data.

et al. (2014) determined the relative reaction rate of acetic
and formic acids with (CH3),COO (i.e.k5/k2) to be roughly
three. Organic acid mixing ratios in this work, as measured
by FTIR, reached up to a few hundred ppbv, suggesting these
will likely be a significant SCI sink in our experiments. We
have therefore explicitly included reaction with organic acids
in our analysis, incorporating the uncertainty arising from
the (unknown) acid reaction rate constant, as described in
Sect. 2.2.1.

The water dimer reactions of non-CH,OO SCIs are not
considered in our analysis. The effect of the water dimer re-
action with Cg and Cy SCISs (rather than the monomer) is ex-
pected to be minor at the maximum [H;O] (2 x 1017 cm’3)
used in these experiments (<30 % RH). Further, with anal-
ogy to the syn-/anti-CH3CHOO system, syn-SCI loss to the
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dimer (and monomer) will not become competitive at the
highest [H,O] used here; for anti-SCI, the water monomer
will already be removing the majority of the SCIs at the
[H,O] at which the dimer would become a significant loss
process. Hence the dimer reaction is deemed unimportant.
For CH,00, the reaction rates with water and the water
dimer have been quantified in recent EUPHORE experimen-
tal studies, and the values from Newland et al. (2015a) are
used in our analysis.

Derivation of k(SCI+H0)/k(SCI 4 SOj)andk, /k(SCI+ SO5)

As noted above, a range of different SCIs are pro-
duced from the ozonolysis of the three monoterpenes (see
Schemes 2-4), each with their own distinct chemical be-
haviour, which, treated individually, introduce too many un-
knowns (i.e. yields, reaction rates) for explicit analysis. Con-
sequently for analytical purposes we treat the SCI population
in a simplified (lumped) manner:

Firstly, we use the simplest model possible, assuming that
a single SCI is formed in each ozonolysis reaction (Eq. 3).

[ ks ki kspar)
L - ([SOz]—i— CH01+ 7+ [acwu) 3)

In a second model, for each monoterpene, the SCIs pro-
duced are assumed to belong to one of two populations, de-
noted SCI-A and SCI-B. These two populations are split ac-
cording to the observation that the decomposition rates and
reaction rates with water for the smaller SCIs (CH3CHOO)
have been predicted theoretically (Ryzhkov and Ariya, 2004;
Kuwata et al., 2010; Anglada et al., 2011) and shown ex-
perimentally (Taatjes et al., 2013; Sheps et al., 2014; New-
land et al., 2015a) to exhibit a strong dependence on the
structure of the molecule. The syn-CH3CHOO conformer,
which has the terminal oxygen of the carbonyl oxide moi-
ety in the syn-position to the methyl group, has been shown
to react very slowly with water and to readily decompose, via
the hydroperoxide mechanism, whereas the anti-CH3CHOO
conformer, with the terminal oxygen of the carbonyl oxide
moiety in the anti-position to the methyl group, has been
shown to react fast with water and is not able to decom-
pose via the hydroperoxide mechanism. Vereecken and Fran-
cisco (2012) have shown that all SCIs studied theoretically
with an alkyl group in the syn-position have reaction rates
with H2O of k<4 x 10~!7 molecule cm? s~! (and for SCIs
larger than acetone oxide, k <8 x 10~ 18 molecule cm? s_l).

We thus define two populations, assuming SCI-A (i.e.
SClIs that exhibit chemical properties of the anti-type SCI)
to react fast with water and not to undergo unimolecular re-
actions and SCI-B (i.e. SCIs that exhibit chemical properties
of the syn-type SCI) to not react with water but to undergo
unimolecular reactions. This simplification allows us to fit to
the measurements using Eqs. (4) and (5), as shown below.
The total SCI yields are determined by our experiments at
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high SO, and the relative yields of SCI-A and SCI-B are de-
termined from fitting to Eq. (5). These relative yields are then
compared to those predicted from the literature.

In this model, f = y? fA+yB B where y is the frac-
tion of the total SCI yield (i.e. y» 4+ yB =1). f2 and fB are
the fractional losses of SCI-A and SCI-B to a reaction with
SO;. Adapting Eq. (1) to include the two SCI species gives
Eq. (4), where ks[acid] accounts for the SCI + acid reaction
(see discussion of reaction rate constants below).

B y k5 1S0,]
k5 [SO2]1+ k3 [H,0] + k£ [acid]
Y 3 1S0,]
kS [SO2] + kg + k2 [acid]

f

“)

Equation (4) can be rearranged to Eq. (5) and fitted accord-
ing to f /[SO] derived from the measurements.

;o yA
- A
5921 15051+ & [H,01 + 5 [acid]
2 2

B
+ Y 5)

B
[SO2]1+ :—ﬁ + % [acid]
2 2

Using values for y* and y® from the literature and varying
the assumed values of the reaction of SCIs with acid (ks)
allows us to determine k3/ k‘ZA‘ and k;/ k]23.

The assumptions made here allow analysis of a very com-
plex system. However, a key consequence is that the relative
rate constants obtained from the analysis presented here are
not representative of the elementary reactions of any single
specific SCI isomer formed, but rather represent a quanti-
tative ensemble description of the integrated system, under
atmospheric boundary layer conditions, which may be ap-
propriate for atmospheric modelling. Additionally our exper-
imental approach cannot determine absolute rate constants
(i.e. values of kp, k3, k4) in isolation and is limited to assess-
ing their relative values, measured under atmospheric con-
ditions, which may be placed on an absolute basis through
use of an external reference value (here the SCI+ SO, rate
constant).

2.2.1 SClyield calculation

The value for the total SCI yield of each monoterpene,
@scI-ToT, was determined from an experiment performed un-
der dry conditions (RH < 1%) in the presence of excess-SO;
(ca. 1000 ppbv), such that SO, scavenged the majority of
the SCI. From Eq. (2), regressing dSO, against dO3 (cor-
rected for chamber dilution), assuming f to be unity (i.e. all
the SCIs produced reacts with SO;), determines the value of
@min, @ lower limit to the SCI yield. Figure 1 shows the ex-
perimental data, from which ¢, was derived.
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In reality f will be less than one at experimentally ac-
cessible SO, levels, as a fraction of the SCIs may still re-
act with trace HoO present or undergo unimolecular reac-
tion. The actual yield, ¢scr, was determined by combining
the result from the excess-SO, experiment with those from
the series of experiments performed at lower SO, as a func-
tion of [HO], to obtain k3/k> and k4/ky (see Sect. 2.2.1),
through an iterative process to determine the single unique
value of ¢gcy which fits both data sets, as described in New-
land et al. (2015a), but taking into account the proposed
model in this paper of there being two SCIs produced. In
this model, f =y fA+yB fB. Where f4 =[S0»]/ ([SO»]
+k3[H,0]/ ky) and fB = [SO,]/([SO2] +ky/ks), other
possible SCIs sinks are assumed to be negligible. In these
excess-SO, experiments, f A~ 1but fB <1 since kg still rep-
resents a significant sink.

y2 (and hence yB, since yB =1—y4) is derived from
fitting Eq. (4) to the data from the experiments performed at
lower SO; for a given ¢. Using a range of ¢ gives a range
of y. These different values of y are used with the respective
values of ¢ in fitting to Eq. (4) to determine values of k3/k>
and kg /k3.

2.2.2 Experimental uncertainties

The uncertainty in k3/k, was calculated by combining the
mean relative errors from the precision associated with the
SO, and ozone measurements (given in Sect. 2.1) with the
20 error and the relative error in ¢, using the root of the sum
of the squares of these four sources of error. The uncertainty
in k4 /ko was calculated in the same way.

The uncertainty in @i, was calculated by combining the
uncertainty in ASO; and AOs3, as above. The uncertainty
in ¢ was calculated by applying the k3/k; uncertainties and
combining these with the uncertainties in ¢, using the root
of the sum of the squares.

3 Theoretical calculations

The rovibrational characteristics of all conformers of the CIs
formed from «-pinene and B-pinene, the transition states
for their unimolecular reaction and their reaction with H,O
were characterised quantum chemically, first using the M06-
2X/cc-pVDZ level of theory, and subsequently refined at
the M06-2X/aug-cc-pVTZ level. To obtain the most accu-
rate barrier heights for reaction, it has been shown (Berndt et
al., 2015; Chhantyal-Pun et al., 2017; Fang et al., 2016a, b;
Long et al., 2016; Nguyen et al., 2015) that post-CCSD(T)
calculations are necessary. Performing these calculations for
the SClIs discussed in this paper, with up to 14 non-hydrogen
atoms, is well outside our computational resources. Instead,
we base our predictions on high-level CCSD(T)/aug-cc-
pVTZ single-point energy calculations, performed for the re-
actions of nopinone oxides and the most relevant subset of
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Figure 3. Application of a 2-SCI model fit (Eq. 4) and a single-SCI
model fit (Eq. 1) to the measured values (open squates) of f /[SO»]
for a-pinene. From the fit we derive relative rate constants for re-
action of the a-pinene-derived SCI, SCI-A and SCI-B with H,O
(k3 /ko) and decomposition ((kg + L)/ky) assuming that yA =0.40
and yB = 0.60.

pinonaldehyde oxides. These data are reliable for relative rate
estimates, but it remains useful to further improve the abso-
lute barrier height predictions, as described by Vereecken et
al. (2017) based on a data set with a large number of system-
atic calculations on smaller CIs, allowing empirical correc-
tions to estimate the post-CCSD(T) barrier heights. Briefly,
they compare rate coefficient calculations against available
harmonised experimental and very high-level theoretical ki-
netic rate predictions and adjusts the barrier heights by 0.4 to
2.6kcalmol ™! (depending on the base methodology and the
reaction type) to obtain the best agreement with these bench-
mark results.

Using the energetic and rovibrational data thus obtained,
multi-conformer transition state theory (MC-TST) calcula-
tions (Truhlar et al., 1996; Vereecken and Peeters, 2003)
were performed to obtain the rate coefficient at 298K
at the high-pressure limit. All rate predictions incorpo-
rate tunnelling corrections using an asymmetric Eckart bar-
rier (Eckart, 1930; Johnston and Heicklen, 1962). For the
reaction of CI4+HO, a pre-reactive complex is postu-
lated at 7kcalmol™! below the free reactants, while the
CI+ (H20), reaction is taken to have a pre-reactive complex
of 11kcal mol™" stability. This pre-reactive complex affects
tunnelling corrections: it is assumed to always be in equilib-
rium with the free reactants.

In view of the high number of rotamers and the result-
ing computational cost, only a single limonene-derived CI
isomer was studied, where the TS for the CI+ H»>O reac-
tion was analysed at the M06-2X/cc-pVDZ level of theory
with only a partial conformational analysis; a limited number
of the energetically most stable TS conformers thus discov-
ered were re-optimised at the M06-2X/aug-cc-pVTZ level
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Figure 4. Application of a 2-SCI model fit (Eq. 4) and a single-SCI
model fit (Eq. 1) to the measured values (open squares) of f /[SO»]
for p-pinene. From the fit we derive relative rate constants for re-
action of the B-pinene-derived SCI, SCI-A and SCI-B with H,O
(k3/kn) and decomposition ((kg + L)/k) assuming that yA =041
and yB =0.59.

of theory. These data will only be used for qualitative as-
sessments. However, we apply the structure—activity relation-
ships (SARs) presented by Vereecken et al. (2017) to obtain
an estimate of the rate coefficients and assess the role of the
individual SCI isomers in limonene ozonolysis.

All quantum chemical calculations were performed using
Gaussian 09 (Frisch et al., 2010).

4 GEOS-Chem model simulation

The global chemical transport model GEOS-Chem (v9-
02, www.geos-chem.org, last access: 27 April 2018, Bey
et al., 2001) is used to explore the spatial and tempo-
ral variability of the atmospheric impacts of the exper-
imentally derived chemistry. The model includes HOx—
NOx—VOC-03-BrOx chemistry (Mao et al., 2010; Par-
rella et al., 2012) and a mass-based aerosol scheme. Bio-
genic monoterpene emissions are taken from the Model of
Emissions of Gases and Aerosols from Nature (MEGAN)
v2.1 inventory (Guenther et al., 2006, 2012). Transport is
driven by assimilated meteorology (GEOS-5) from NASA'’s
Global Modelling and Assimilation Office (GMAO). The
model is run at 4° x 5° resolution, with the second
year (2005) used for analysis and first year discarded as
spin-up. The model code used for these runs is available
at https://doi.org/10.5281/zenodo.1220385 and the model
run directory at https://doi.org/10.5281/zenodo.1220387
(GEOS-Chem team v9-02, 2018).

In this study, the standard simulation was expanded
to include emissions of seven monoterpene species (-
pinene, S-pinene, limonene, myrcene, ocimene, carene and
sabinene) from MEGAN v2.1. The ozonolysis scheme for
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Figure 5. Application of a 2-SCI model fit (Eq. 4) and a single-SCI
model fit (Eq. 1) to the measured values (open squares) of f /[SO3]
for limonene. From the fit we derive relative rate constants for re-
action of the limonene-derived SCI, SCI-A and SCI-B with H,O
(k3/ko) and decomposition ((k; + L) /ko) assuming that yA =0.22
and yB =0.78.

each monoterpene, detailed in Sect. 7.1, considers the forma-
tion of one or two types of SCI and their subsequent reaction
with SO», H>O or unimolecular decomposition. The reaction
rates of the monoterpenes with OH, O3 and NO3 are detailed
in Supplement Table S1.

5 Experimental results
5.1 SClIyield

Figure 1 shows the lower limit to the SCI yield, @iy, for
the three monoterpenes, determined from fitting Eq. (5) to
the experimental data. This gives values of 0.16 (£0.01)
for a-pinene, 0.53 (£0.01) for B-pinene and 0.20 (£0.01)
for limonene. These ¢min values were then corrected as de-
scribed in Sect. 2.2.2 using the k3/k> and k4 /ko> values de-
termined from the measurements shown in Figs. 3-5 using
Eq. (4). The corrected yields, ¢scy, are 0.19 (£0.01) for
a-pinene, 0.60 (£0.03) for S-pinene and 0.23 (£0.01) for
limonene. Uncertainties are =20 and represent the combined
systematic (estimated measurement uncertainty) and preci-
sion components. Literature yields for SCI production from
monoterpene ozonolysis are summarised in Table 1.

The value derived for the total SCI yield from «-pinene in
this work of 0.19 agrees within the uncertainties, with a value
of 0.15 (£0.07) reported by Sipild et al. (2014) and a value
of 0.20 applied in the MCMv3.3.1.

The total SCI yield from B-pinene derived in this work,
0.60, agrees reasonably well with the recent experimental
work of Ahrens et al. (2014), who derived a total SCI yield
of 0.50 (0.40 for the sum of CI-1 and CI-2 and 0.10 for
CH»O0O0, which is assumed to be formed almost completely
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Figure 6. Variation of k3/ky (k(SCI-A+H»0)) / (k(SCI-A 4+ SO»)
and k; (k(SCI-B unimol.)) / (k(SCI-B4+SO;) as a function of
the ratio k5/ky (k(SCI+ acid) / k(SCI+ SO»)), derived from least
squares fit of Eq. (4) to measurements shown in Figs. 3-5 for «-
pinene, B-pinene and limonene respectively.

stabilised). The MCMv3.3.1 applies a total SCI yield of 0.25,
of which 0.10 is a C9-CI and 0.15 is CH,OO0. Earlier stud-
ies also tended to derive lower total SCI yields ranging from
0.25 to 0.27 (Hasson et al., 2001; Hatakeyama et al., 1984).

The total SCI yield from limonene derived in this work,
0.23 (£0.01) agrees with the recently determined yield
from Sipild et al. (2014) of 0.27 (£0.12). Leungsakul et
al. (2005) derived a somewhat higher yield of 0.34, while
the MCMv3.3.1 applies a lower yield of 0.135.

5.2 k3(SCI+H;0)/ k; (SCI+S0O;) and
k4 /k2(SCI + SO3) analysis

Figure 2 shows the loss of SO, as ozone is consumed by reac-
tion with the monoterpene for each of the three systems. Box
modelling results suggest that >99 % of this SO, removal is
caused by reaction with SCIs produced in the alkene—ozone
reaction (rather than e.g. reaction with OH, which is scav-
enged by cyclohexane). When the experiments are repeated
at higher relative humidity, the rate of loss of SO, decreases.
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Table 1. Monoterpene SCI yields derived in this work and reported in the literature.

OSCI Reference Notes Methodology
a-pinene
0.19 (£0.01) This work SO, loss
0.15 (£0.07) Sipild et al. (2014) Formation of HySOy4
0.22 Taipale et al. (2014)
0.125 (£0.04) Hatakeyama et al. (1984) Formation of HySOy4
0.20 MCMv3.3.12
B-pinene
0.60 (£0.03) This work SO, loss
0.46 Ahrens et al. (2014) ©c9-scr:0.36 FTIR detection
¢cH200: 0.10
0.25 MCMv3.3.12 wc9—scr: 0.102
®cH200: 0.148
0.42 Nguyen et al. (2009a) vco-scr: 0.37 Theoretical
¢cH200: 0.05
0.51 Winterhalter et al. (2000)  ¢c9.scr: 0.35 Change in nopinone yields f([H,O])
¢cH200: 0.16
0.44 Kotzias et al. (1990) Formation of HySO4
0.25 Hatakeyama et al. (1984) Formation of HySOy4
0.30 Zhang and Zhang (2005)  ¢c9.scr: 0.22
®cH200: 0.08
>0.27 Ma and Marston (2008) vco.scr: 0.27 Change in nopinone yields f([H,O])
¢CcH200: 0.16
¢cH200: 0.06°
0.27 Hasson et al. (2001) Change in nopinone yields f([H,O])
Limonene
0.23 (£0.01) This work SO, loss
0.27 (£0.12) Sipild et al. (2014) Formation of HySOy4
0.34 Leungsakul et al. (2005)  ¢c10-scr: 0.26 Measurement of stable particle and gas-phase products
@cr-x: 0.04
¢cH200: 0.05
0.135 MCMv3.3.12

Uncertainty ranges (+2o, parentheses) indicate combined precision and systematic measurement error components for this work and are given as stated for
literature studies. All referenced experimental studies produced SCIs from MT + O3 and were conducted between 700 and 760 Torr.
4 http://mem.leeds.ac.uk/MCM/ (last access: 27 April 2018) (Jenkin et al., 2015). # Assuming 100 % stabilisation. b Assuming 40 % stabilisation.
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Figure 7. Annual mean monoterpene SCI-A and SCI-B concentrations (cm~3) in the surface layer of the GEOS-Chem simulation.
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Monoterpene SCI contribution to gas-phase SO, oxidation
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Figure 8. Seasonal SO, oxidation by monoterpene SCIs as percentage of total gas-phase SO, oxidation in the surface layer.

This is as expected from Eq. (1) and suggests that there is
competition between SO, and H>O for reaction with the SCIs
produced, in agreement with observations of smaller SCI,
which demonstrate the same competition under atmospher-
ically relevant conditions (Newland et al., 2015a, b).

However, as the relative humidity is increased further, the
SO, loss does not fall to (near) zero as would be expected
from Eq. (1). This suggests that at high [H»O] the amount
of SO» loss becomes less sensitive to [H>O]. This is most
likely due to there being at least two chemically distinct SCI
species present. This behaviour was previously observed for
CH;CHOO by Newland et al. (2015a) and fits with the cur-
rent understanding that the reactivity of SCIs is structure de-
pendent.

To recap Sect. 2.2.1, the analysis presented here considers
two models to fit the observations. The first of these (Eq. 3)
assumes the formation of a single SCI species, which, in ad-
dition to reacting with SO», can react with water, undergo
unimolecular reaction or react with acid. It is clearly evident
from Figs. 3-5 that this model does not give a good fit to
the observations for any of the monoterpene systems stud-
ied. Therefore, the results of this (single SCI) approach are
not discussed explicitly hereafter. The second of the mod-
els (Eq. E5) assumes the formation of two lumped, chemi-
cally distinct populations of SCI, denoted SCI-A and SCI-B.
SCI-A is assumed to react fast with H>O and to have min-
imal decomposition. Conversely, SCI-B is assumed to have
a negligible reaction with water under the experimental con-
ditions applied but to undergo rearrangement via a VHP. We
use a least squares fit of Eq. (5) to the data to determine the
values of k3/ky and k,/kp. This approach fits the data well

www.atmos-chem-phys.net/18/6095/2018/

(Figs. 3-5) for all 3 monoterpenes and represents the over-
all attributes of the SCIs that formed but as noted, does not
represent an explicit determination of individual conformer-
dependent rate constants.

5.2.1 «-pinene

The a-pinene system is sensitive to water vapour at the low
H,O range, with the SO, loss falling dramatically when the
RH is increased from 0.1 to 2.5 % (Fig. 2). However, at
higher RH the SO; loss appears to be rather insensitive to
[H>O].

CI-1 can be formed in either a syn- (la) or anti-
configuration (1b), whereas both CI-2 conformers are in a
syn-configuration (see Scheme 2). For one of the two con-
formers of CI-2 (CI-2b), the hydrogen atom available for ab-
straction by the terminal oxygen of the carbonyl oxide group
is attached to the carbon on the 4-membered ring. This has
been shown in the B-pinene system to make a large differ-
ence with respect to the ability of the hydrogen to be ab-
stracted and to undergo the VHP mechanism (Rickard et al.,
1999; Nguyen et al., 2009a). This therefore suggests that CI-
2b may exhibit characteristics of both SCI-A and SCI-B. Ma
et al. (2008) infer a probable equal yield of the two basic CI
structures. This would suggest a relative yield for SCI-A of
0.25-0.50 (depending on the precise nature of CI-2b). Fitting
Eq. (4) to the data and allowing lambda to vary determines
values of y® =0.40 and y® = 0.60 (Fig. 3).

In Fig. 3, Eq. (4) is fitted to the a-pinene measurements,
assuming k£(SCI+ acid) / k(SCI+ SO,) = 0. This derives a
minimum value for £(SCI-A 4+ H»0) / k(SCI-A + SO»), the
water-dependent fraction of the SCI and a maximum value

Atmos. Chem. Phys., 18, 6095-6120, 2018
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for k (decomposition: SCI-B) / k(SCI-B 4 SO,), the water
independent fraction of the SCI. The kinetic parameters de-
rived from the fitting are displayed in Table 2.

Figure 6 shows the wvariation in the
k3/ko and kg/ko values as the ratio ks5/ko,
k(SCI + acid) / k(SCI+ SO3), which is varied from
zero to one. The derived k3/k> increases by about 40 %
from 1.4 (£0.34)x 1073 to 2.0 (£0.49)x 1073. The
derived kg /k> value decreases again by about 40 % from 8.2
(£1.5) x 102 cm~3 t0 5.1 (£0.93) x 102 cm 3.

The derived limits to the relative rate constants can be
put on an absolute scale using the k(SCI+ SO,) values
for CH3CHOO from Sheps et al. (2014) for the syn- and
anti-conformers. For syn this is 2.9 x 107" cm3s™! and
for anti this is 2.2 x 1071%cm3?s~!. The syn-rate constant
is applied to the derived k(decomposition:SCI-B) / k(SCI-
B+ S0O;) value and the anti rate constant to the k(SCI-
A+ H>0) / k(SCI-A 4+ SO») value. It should be noted that
the ko values are for quite different SCIs to those formed
in this study and to our knowledge no structure-specific
k(SCI+SO;) have been reported for monoterpene-derived
SCI, though Ahrens et al. (2014) determine an average
ko ~4x 10" em3s™! for SCI derived from B-pinene, i.e.
a value within an order of magnitude of those determined for
the smaller SCIs CH,OO, CH3CHOO and (CH3),COO (e.g.
Welz et al., 2012; Taatjes et al., 2013; Sheps et al., 2014;
Huang et al., 2015). Using the Sheps et al. (2014) values
yields k(SCI-A +H,0) >3.1 (£0.75) x 10~ B cm?s~! and
k(decomposition:SCI-B) <240 (+44) s™! (using the values
derived for k(SCI-A + acid) / k(SCI-A 4 SO;) = 0). This k3
value is an order of magnitude larger than the rate constants
determined for the smaller anti-CH3CHOO in the direct stud-
ies of Sheps et al. (2014) (2.4 x 10~ cm?s~!) and Taat-
jes et al. (2013) (1.0 x 10~ em3s~1). The decomposition
value derived for SCI-B is of the same order of magnitude
as that for syn-CH3;CHOO (348 + 3325~ !) and (CH3),COO
(819 £ 190 s~!) from Newland et al. (2015a) (using updated
direct measurement values of k> from Sheps et al. (2014) and
Huang et al. (2015) for syn-CH3CHOO and (CH3)>,COO re-
spectively) and within the range from the recent paper by
Smith et al. (2016) which derives a decomposition rate for
(CH3)2COO of 269 (+82)s~! at 283K increasing to 916
(£56)s~! at 323 K.

Sipild et al. (2014) applied a single-SCI analysis ap-
proach to the formation of H,SO4 from SO, oxidation in
the presence of the a-pinene ozonolysis system. They de-
termined that for a-pinene, kg > k(SCI+ H>0)[H,O] for
[H,0] <2.9 x 107 cm™3, i.e. that the fate of SCIs formed
in the system is rather insensitive to [HO]. Across the [SO»]
and RH ranges used in their study, the results obtained here
would indicate H>O to always be the dominant sink for SCI-
A; i.e. the fact that Sipild et al. (2014) see similar HySOq4
production across the RH range in their study is consistent
with these results.

derived
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5.2.2 B-pinene

Two recent studies (Nguyen et al., 2009a; Ahrens et al.,
2014) have suggested yields of the two Cy-CI (CI-3 and
CI-4; see Scheme 3) obtained from B-pinene ozonolysis to
be roughly equal. In these studies Ahrens et al. (2014) as-
sume a CHOO yield of 0.10 while Nguyen et al. (2009a)
determine theoretically the yield of CH,OO to be 0.05. An-
other theoretical study (Zhang and Zhang, 2005) predicted a
CH, OO0 yield of 0.08. In experimental studies, Winterhalter
et al. (2000) determined the CH,OO yield to be 0.16 (£0.04)
from measuring the nopinone yield and assuming it to be en-
tirely a primary ozonolysis product (i.e. the co-product of
CH,00 formation) and Ma and Marston (2008) determine a
summed contribution of 84 % (£0.03) for the two Cy-CI (i.c.
a 16 % CH,00 yield). The theoretical studies are somewhat
lower than the experimental but Nguyen et al. (2009a) note
that CI-4 is likely to form additional nopinone in bimolecular
reactions. The CH,OO is assumed to all be formed stabilised
(e.g. Nguyen et al., 2009a).

SCI-3 is expected to undergo unimolecular reactions at
least an order of magnitude faster than SCI-4 (Nguyen et
al., 2009a; Ahrens et al., 2014). The reaction of SCI-3 with
water is expected to be slow based on the calculations pre-
sented in Table 4, with a pseudo first order reaction rate
of 0.3s™! at the highest [H,0] used here, 2 x 10'7 cm™3,
298 K, whereas the water reaction with SCI-4 is expected
to be considerably faster with a pseudo first order reaction
rate of 85s~! at [H0]=2 x 10'7 cm~3, 298 K. This reac-
tion would thus be expected to be competitive with reaction
with SO, for SCI-4 under the experimental conditions em-
ployed. This is in agreement with the observations of Ma and
Marston (2008), which show a clear dependence of nopinone
formation on RH (presumed to be formed from SCI 4 H,O).
Fitting Eq. (4) to the data determines values of y* =0.41
and y® =0.59 (Fig. 4).

Using these values, and assuming k(SCI+ acid)/
k(SCI+S0;) =0, yields a k(SCI-A+H0)/ k(SCI-
A+S0,) value of >10 (£027)x107* and a
k(decomposition:SCI-B) / k(SCI-B + SO,) value of <6.0
(£1.3) x 10'2cm—3 (Table 2).

As shown in Fig. 6, increasing k5/ka,
k(SCI + acid) / k(SCI + SO;), from zero to one, de-
creases the derived k;/k> from 6.0 (£1.3) x 10"2¢m™3 to
1.8 (£0.39) x 10'2 cm™3. The derived k3/k; increases by a
factor of 4 from 1.0 (£0.27) x 10~% t0 3.7 (£1.0) x 10~4.

These values can be put on an absolute scale (us-
ing the values derived above forks/ky = 0). For SCI-A,
k(SCI+S0;) is taken as the experimentally determined
value of 4x 10" em3s™! from Ahrens et al. (2014).
For SCI-B, the syn-CH3CHOO k(SCI+ SO;) value de-
termined by Sheps et al. (2014) is used. This gives
values of k(SCI-A+H,0) >4 x 10713 (£1)cm?®s™! and
k(decomposition:SCI-B) < 170 (£38) s~L
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Table 2. Monoterpene-derived SCI relative and absolute? rate constants derived in this work.

SCI 10%k3/ky  1019k3 (em3s™1)

10~ 2kg /ky (cm™3) kq (s71)

a-pinene

SCI-A
SCI-B

> 140 (£34)

>310 (£75)

<82 (£1.5) <240 (£44)°

B-pinene

SCI-A
SCI-B

>10 (£2.7)

>4 (£1)b

<6.0(£1.3) <170 (£38)¢

Limonene

SCI-A
SCI-B

<35(£0.2)

<7.7 (£0.6)2

>4.5(£0.1)  >130 (£3)°

Uncertainty ranges (+2o, parentheses) indicate combined precision and systematic measurement error components.
a Scaled to an absolute value using k;(anti-CH3CHOO) = 2.2 x 10710 ¢cm3 1 (Sheps et al., 2014). b Scaled to an
absolute value using kj (anti-CH3 CHOO) =4 x 1071 em3 51 (Ahrens et al., 2014). © Scaled using
ky(syn-CH3CHOO) = 2.9 x 10~ cm3 s=1 (Sheps et al., 2014).

5.2.3 Limonene

For the limonene measurements presented in Fig. 2,
(dSO7 /dO3) /dt appears to be non-linear, with a jump
in dSO; /dO3 between 120 and 150 ppbv of ozone con-
sumed. This is most evident in the two lowest RH runs (0.2
and 2.0 %). Limonene is the fastest reacting of the systems
presented here, with the alkene reaction having consumed
100 ppbv of ozone within the first 5min. The limonene
sample required about 5min of heating before the entire
sample was volatised and injected into the chamber. This
therefore may account for the apparent non-linear nature of
dS0O; / dOs3 in Fig. 2.

The SO, loss in the limonene—ozone system is less af-
fected by increasing H,O than for either « or B-pinene
(Fig. 5), with the values of f /[SO,] (y axis) varying by
roughly a factor of 2 over the RH range applied compared
to more than a factor of 3 for the other two systems. Hence
it might be expected that there is little formation of HyO-
dependent SCI or that it has a rather slow reaction rate with
water.

Fitting Eq. (4) to the data determines values of y* =0.22
and yB =0.78 (Fig. 5). This is broadly in line with the ratio
recommended in the MCMv3.3.1 of 0.27: 0.73 and with that
proposed in Leungsakul et al. (2005), who use a CI-A : CI-
B ratio of 0.35:0.65, but also include some stabilisation of
CH,00 and Co-CI from ozone reaction at the exocyclic
bond. This yields a k(SCI-A 4 H;0) /k(SCI-A +SO)
value of <3.5 (£0.20) x 1073 and a k(decomposition:SCI-
B) / k(SCI-B 4 SO») value of >4.5 (£0.10) x 10'? cm™3.

Figure 6 shows that the derived k4/ky increases
by about 7% as k(SCI+ acid)/k(SCI+ SO;) ranges
from 0.0 to 0.8. The derived k3/k> becomes negative
atk(SCI + acid) / k(SCI + SO,) > 0.8, placing an upper limit
on this ratio, i.e. k5/k <0.8, for the limonene system.
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Placing these values on an absolute scale (using the val-
ues derived forks/k; =0), using the CH3CHOO syn- and
anti-k(SCI + SO») determined by Sheps et al. (2014), yields
values of <7.7 (£0.60) x 10~ cm? s~! and > 130 (£3)s~!
for k3 and k; respectively. These values are similar to
those derived for the SCI-A and SCI-B formed from B-
pinene. The k3 value is a factor of 3 smaller than that deter-
mined by Sheps et al. (2014) for k3(anti-CH3CHOO + H,0),
24x 1074 cm? s

Sipild et al. (2014) applied a single-SCI analysis ap-
proach to the formation of H,SO4 from SO; oxidation by
the limonene ozonolysis system and determined that, sim-
ilarly to «-pinene, k(decomp.) > k(SCI+ H>O)[H,O] for
[H,0]<2.9 x 1017 cm™3; i.e. the system is rather insensitive
to [HO]. Our data are consistent with the limonene system
being less sensitive to [HoO] than the SCI populations de-
rived from the other two monoterpenes reported here.

5.2.4 Experimental summary

The reaction rates of SCI-A (i.e. SCIs that exhibit
chemical properties of the anti-type SCI) derived from
the three different monoterpenes with a water range
from <0.8 to >31x10""“cm3s™! are broadly in
line with the derived rates of Sheps et al. (2014) for
anti-CH3CHOO of 2.4 x 10~ cm?s~!. The decompo-
sition rates of SCI-B (i.e. SCIs that exhibit chemical
properties of the syn-type SCI) are of the order of
100-250s~!. This is in line with those derived for syn-
CH3CHOO from cis- and trans-but-2-ene ozonolysis and
(CH3)>COO by Newland et al. (2015a) of 348 (+332)s~!
and 819 (£190)s~! respectively (assuming k(syn-
CH3CHOO +S0;) = 29 x 107" em3s™! (Sheps et al.,
2014) and k((CH3)2CO0 +S02) =2.9 x 10710 cm?s71;
Huang et al., 2015) and recent results from Smith et

Atmos. Chem. Phys., 18, 6095-6120, 2018
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Table 3. Unimolecular reactions for the CIs derived from «-pinene, 8-pinene and d-limonene, as derived by Vereecken et al. (2017). Barrier

heights (kcal mol_l) listed estimated post-CCSD(T) energies.

Carbonyl oxide  Reaction Ep k(298 K)/ g1
o-pinene
Cl-1a 1,4-H migration 15.8 600
SOZ-formation 156  5x 1072
1,3-ring closure  21.6 1x 103
CI-1b 1,3-ring closure  14.8 60
1,3-H migration  29.0  1x 107
CI-2a 1,4-H migration 163 250
1,3-ring closure  20.8 6 x 1073
CI-2b 1,4-H migration 17.0 60
SOZ-formation  13.5 8
Ring closure 199 3x1072
B-pinene
CI-3 1,4-H migration 15.7 375
1,3-ring closure  21.1 2 x 103
CI-4 1,3-ring closure  17.2 2.0
Ring opening 23.6  (Slow, Nguyen et al., 2009a)
1,4-H migration 24.9  (Slow, Nguyen et al., 2009a)
CH,00 1,3-ring closure  19.0 0.3
1,3-H migration  30.7 1 x 10~/
Limonene*
CI-5a 1,4-H migration SAR  200*
CI-5b 1,3-ring closure SAR  75*
Cl-6a 1,4-H migration ~SAR  430*
CI-6b 1,4-H migration SAR  700*
Cl-7a 1,4-H migration SAR 15
CI-7b 1,4-H migration SAR 600

* Formation of secondary ozonides (SOZ) is not included and could be the dominant unimolecular

loss.

al. (2016) of 269-916s~! (strongly dependent on tempera-
ture) for (CH3)2COOQO decomposition. In this work we only
derive relative rates, but the similarity of the k3 and k4 values
derived when the k, values for syn- and anti-CH3;CHOO
from Sheps et al. (2014) are applied is consistent with the
recent work of Ahrens et al. (2014), suggesting that large
SCI, derived from monoterpenes, demonstrate a similar
reactivity towards SO; to that of smaller SCI. One uncer-
tainty in the derivation of the kinetics presented herein is the
reactions of the SCIs produced with organic acids. These
acids were present in the experiments (owing to formation in
the monoterpene ozonolysis reactions themselves) at levels
which may have been a competitive sink for the SCI.

6 Theoretical results and comparison to experiments
The theoretically predicted rate coefficients for unimolecular

reactions of the monoterpene SCIs are listed in Table 3, while
those for the reaction with H,O are listed in Table 4. These

Atmos. Chem. Phys., 18, 6095-6120, 2018

data can be compared with the experimental data obtained in
this work.

6.1 «-pinene

The theory-based rate coefficients show one pinonaldehyde
oxide, CI-1b, with a rate of reaction with water that is signif-
icantly faster than the remaining «-pinene-derived CIs. Com-
paring this rate to the experimental data shows that CI-1b cor-
responds to SCI-A, with matching rate coefficients within an
order of magnitude, i.e. within the expected uncertainty. We
thus deduce that SCI-A is CI-1b. The remaining pinonalde-
hyde oxides, CI-1a, CI-2a and CI-2b, react predominantly
through unimolecular reactions, in which theory-based rate
coefficients range from 60 to 600s~!. All are within a factor
of 4 of the experimentally derived population-averaged rate
of 240 +44s~!, i.e. matching within the uncertainty mar-
gins. The unimolecular rate coefficients of this set of Cls are
sufficiently close that it is not feasible to separate these in the
experimental data, so we can only conclude that SCI-B in the

www.atmos-chem-phys.net/18/6095/2018/
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Table 4. Rate coefficients (cm3 molecule™! s~! ) for the reaction of
CIs with HyO and (H,O), as predicted by Vereecken et al. (2017).
Values are based on explicit CCSD(T)/aug-cc-pVTZ//M06-2X/aug-
cc-pVTZ calculations and multi-conformer TST, including empiri-
cal corrections to reference experimental data, except for limonene-
derived CIs where the values are predicted using a structure—activity
relationship. The rate coefficients for CH,OO, CH3CHOO and
(CH3)2COO are within a factor of 4 of evaluated literature data
(Vereecken et al., 2017).

Carbonyl oxide ~ k(298K) HyO  k(298K) (H,0),
CH,00 8.7x 10716 1.4x 10712
syn-CH;CHOO 6.7 x 10719 2.1x 10713
anti-CH;CHOO 23 x 10714 2.7 x 10711
(CH3)2COO 75% 10718 1.8 x 10714
a-pinene

Cl-1a 13x 10718 29x 10715
CI-1b 1.5x 10714 1.7 x 1011
CI-2a 1.0x 10718 25x%x 10713
CI-2b 24 x 10719 7.0 x 10716
B-pinene

CI-3 1.7x 10718 43x 10715
Cl-4 42 x 10716 6.4 x 10713
Limonene

CI-5a 1.5x 10718 43 x 10715
CIL-5b 1.5x 10714 1.7 x 10711
Cl-6a 9.1 x 10718 2.1x 10714
CI-6b 1.5 x 10717 32x 10714
CI-7a 9.7 x 10718 1.9x 10714
CI-7b 43 x 10718 1.1x 10714

a-pinene ozonolysis experiments may consist of a mixture of
C-1a, CI-2a and CI-2b.

6.2 B-pinene

The theoretical analysis for nopinone oxides shows one iso-
mer, SCI-4, that has a fast rate of reaction with water, but
a slow unimolecular isomerisation, while the other isomer,
SCI-3, shows a fast unimolecular decomposition. These can
thus be unequivocally equated to the experimentally obtained
SCI-A and SCI-B, respectively, inasmuch as the yield of
CH,00 is minor. The predicted rate coefficients are within
the expected uncertainty intervals of the theoretical data, a
factor of 5 for the unimolecular rates and an order of magni-
tude for the reaction with H>O.

The experimental rate measurements are defined relative
to the reaction rate with SO;; the value adopted for the
k(SCI+ SO,) reaction therefore influences the derived rate
coefficient values. Ahrens et al. (2014) directly measured
the SO, rate coefficient of the longest-lived SCI (SCI-4) to

www.atmos-chem-phys.net/18/6095/2018/

be ~4x 107" em3s~!, but for SCI-3 we assume a simi-
lar rate coefficient as syn-CH3CHOO + SO, determined by
Sheps et al. (2014) of 2.9 x 10~ cm? s~!. Nopinone oxides
are bicyclic compounds, with a bulky dimethyl-substituted
4-membered ring adjacent to the carbonyl oxide moiety.
To examine the potential impact of steric hindrance on the
SCI+ SO reaction, we characterised all sulfur-substituted
secondary ozonides (S-SOZ) formed in this reaction (Kuwata
et al., 2015; Vereecken et al., 2012). We find that the tricyclic
S-SOZ shows very little interaction between the sulfur-
bearing ring and the B-pinene substituents, and little change
in the ring strain. The energies of the S-SOZ adducts relative
to the SCI 4 SO; reactants thus remain very similar to that of
CH,00, CH3CHOO or (CH3),COQO, confirming the quality
of our selection of reference rate coefficients.

6.3 Limonene

Of the six non-CH,00 ClIs formed in limonene ozonoly-
sis, CI-5b was predicted to have a fast reaction rate with
H;O; its oxide substitution patterns is similar to pinonalde-
hyde oxide CI-1b. The SAR-predicted rate coefficient of CI-
5b+ H»O is within a factor of 2 of the experimentally de-
rived k3 value for SCI-A, such that we can equate SCI-A to
CI-5b with confidence. The SCI-B set of Criegee interme-
diates then contains the summed population of the remain-
ing five Cls, all of which react slowly with H,O. The SAR-
predicted unimolecular decay rate coefficients range from 15
to 700 s~ all within a factor of 9 of the experimentally ob-
tained k; = 130s~!; it should be noted that for limonene-
derived CIs, no explicit theoretical calculations are avail-
able, and the SAR-predictions carry a somewhat larger un-
certainty. We have performed an exhaustive characterisation
of the conformers of CI-5b. The most stable conformers show
an internal complex formation between the oxide moiety and
the carbonyl group, similar to those characterised for the bi-
molecular reaction of CIs with carbonyl compounds (Jalan et
al., 2013; Wei et al., 2015). The theoretical study by Jiang et
al. (2013) on limonene ozonolysis appears to have omitted
internal rotation and cannot be compared directly. It seems
likely that the limonene-derived CIs can thus easily undergo
internal SOZ formation, which is thought (Vereecken and
Francisco, 2012) to be entropically unfavourable, but has a
low barrier to reaction. For a-pinene, a similar internal com-
plex formation and SOZ ring closure is not as favourable
due to the geometric limitations enforced by the 4-membered
ring.

A large number of transition state conformers for CI-
5b+ H>O were characterised, though no exhaustive search
was completed. The energetically most favourable struc-
tures show interaction between the carbonyl group and the
H,O co-reactant as it adds onto the carbonyl oxide moiety.
Similar stabilising interactions between the carbonyl moi-
ety and the carbonyl oxide moiety were reported recently
in cyclohexene-derived CIs (Berndt et al., 2017). This in-
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Table 5. Kinetic parameters used in the global modelling study.

M. J. Newland et al.: The atmospheric impacts of monoterpene ozonolysis

SCI pscr 108%k3 (em®s™1) 1018 (emPs7h) kg (s71)
a-pinene

SCI-A 0.08 310 22 -
SCI-B 0.11 - 2.9 240
B-pinene

SCI-A 0.25 4 4 -
SCI-B 0.35 - 2.9 170
Limonene

SCI-A 0.05 7.7 22 -
SCI-B 0.18 - 2.9 130
Myrcene

SCI-B 0.30 - 13b 400°¢
Ocimene

SCI-B 0.30 - 13b 400°
Sabinened

SCI-A 0.25 4 4 -
SCI-B 0.35 - 29 170
3-carene ©

SCI-A 0.08 310 22 -
SCI-B 0.11 - 2.9 240

3k (SCI-A + SO») from (SO +anti-CH3CHOO) — Sheps et al. (2014); k> (SCI-B + SO,) from
(SO, + syn-CH3CHOO) — Sheps et al. (2014) unless otherwise stated. bkz(SCI—B +S0,) from
(SOeranti-(CHdg)QCOO) — Huang et al. (2015). © Temperature-dependent k4 (SCI-B) taken from

IUPAC (2017).

teraction thus lowers the barrier to a reaction, though it is
currently unclear whether it enhances the reaction rate, e.g.
compared to the @-pinene-derived CI-1b, as these hydrogen-
bonded structures are entropically not very favourable. The
intra-molecular interactions with heterosubstituents could be
investigated in future work.

7 Global modelling study
7.1 SCI chemistry

A global atmospheric modelling study was performed using
the GEOS-Chem chemical transport model (as described in
Sect. 4) to examine the global monoterpene-derived SCI bud-
get and the contribution of these SCIs to gas-phase SO, ox-
idation. The existing chemistry scheme in the model is sup-
plemented with monoterpene SCI chemistry based on the
experimental results described in Sect. 5 and in Table 5. It
should be noted here that this modelling study focuses on the
chemical impacts of monoterpene SCIs formed from ozonol-
ysis reactions only. No chemistry for other SCIs derived from
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Kinetics based on B-pinene. ¢ Kinetics based on a-pinene.

isoprene and/or other (smaller) alkenes are incorporated in
the adapted model chemical scheme.

The monoterpene emissions in GEOS-Chem are taken
from MEGAN v2.1 (Guenther et al., 2012). The scheme
emits seven monoterpenes: «-pinene, B-pinene, limonene,
myrcene, ocimene, 3-carene and sabinene. The monoter-
penes are oxidised within the model by OH, NO3 and O3
at rates shown in Table S1. Reaction with O3 leads to the
production of monoterpene-specific SCI. Reactions with OH
and NOs3 do not lead to the formation of any products,
with the reactions only acting as a sink for the monoter-
pene and the respective oxidant. The SCI yields from the
ozonolysis of a-pinene, S-pinene and limonene are derived
from the experimental work presented here. SCIs from each
monoterpene are split into SCI-A and SCI-B as defined in
previous sections. For the other four monoterpenes emitted,
the SCI yields and kinetics are derived based on the sim-
ilarity of the structure to one of the species studied here
or previously in the literature. The main SCIs produced in
the ozonolysis of myrcene and ocimene are expected to
be acetone oxide ((CH3)2COQ) or 4-vinyl-5-hexenal oxide
(CH,CHC(CH,)CH>CH,CHOO), since ozone has been sug-
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Table 6. Monoterpene contribution to [SCI] and SO, oxidation in the surface layer of the model simulation.

Monoterpene Annual emissions* % contribution % contribution % contribution to

(TgO) to [SCI-A] to [SCI-B] SO, oxidation
a-pinene 354 0.5 15 5.8
B-pinene 16.9 74 43 54
Limonene 9.2 35 13 6.0
Myrcene 3.1 0.0 2.7 9.0
Trans-f-ocimene 14.1 0.0 11 20
Sabinene 7.9 22 13 3.8
3-carene 6.4 0.0 25 1.3

* From MEGAN v2.1 (Guenther et al., 2012).

gested to react predominantly at the internal double bond
(~97% for myrcene, ~90% for ocimene Baker et al.,
2004). The SCI yield is taken to be 0.30, similar to that of
(CH3)2COO from 2,3-dimethyl-but-2-ene ozonolysis (New-
land et al., 2015a). However, this may be an underestimation
since it has been predicted that stabilisation of small CIs in-
crease with the size of the carbonyl co-product, as this co-
product can take more of the nascent energy of the primary
ozonide on decomposition due to a greater number of degrees
of freedom available (Nguyen et al., 2009a; Newland et al.,
2015b). Sabinene is a bicyclic monoterpene with an exter-
nal double bond and hence is treated like 8-pinene. This as-
sumption is backed up by recent theoretical work (Wang and
Wang, 2017), who predict similar behaviour from sabinene-
derived SClIs to the predicted behaviour from B-pinene SCIs
by Nguyen et al. (2009a). They predict a SCI yield between
24 and 64 %. 3-carene is a bicyclic monoterpene with an in-
ternal double bond and is treated like «-pinene.

7.2 Modelling results

Figure 7 shows the annually averaged total SCI burden from
monoterpene ozonolysis in the surface layer in the GEOS-
Chem simulation. A number of interesting features are appar-
ent from this figure and the associated information is given
in Table 6:

i. The highest annually averaged monoterpene SCI con-
centrations are found above tropical forests.

ii. Peak annually averaged monoterpene SCI concentra-
tions are ~ 1.4 x 10* cm—3.

iii. >97 % of the total monoterpene SCI burden is SCI-B.

Annual global monoterpene emissions are dominated by
the tropics (Fig. S1 in the Supplement), accounting for
>90% during the Northern Hemisphere winter months
(November—April) and 70 % even during the peak emissions
from the northern boreal region during June and July (Sinde-
larova et al., 2014). Despite annually averaged surface ozone
mixing ratios being roughly a factor of 2 higher in the north-
ern middle to high latitudes, monoterpene SCI production
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is still dominated by the tropics. Annually averaged surface
monoterpene SCI concentrations across the northern boreal
regions are <2 x 103 cm™3; during the summer months (JJA)
this value rises to 2-5 x 103 cm™3.

More than 97 % of the total monoterpene-derived SCIs
are SCI-B (Table 6). This is because typical water vapour
concentrations in the tropics are >5.0 x 10'7 cm™3. This
gives SCI-A removal rates (i.e. k3[H2O]) of 2 x 103-
1.5 x 10° s~!, whereas removal rates of SCI-B to unimolec-
ular reactions have been determined here to be 1-3 orders
of magnitude slower, of the order of 100-250 s~ L. Since the
loss of SCI-B is independent of temperature in the model,
the highest SCI-B concentrations would be expected to be lo-
cated in the regions of highest SCI-B production. Recent ex-
perimental studies (Smith et al., 2016) have demonstrated a
strong temperature dependence for the unimolecular decom-
position rate of (CH3)>,COO between 283 and 323 K (269—
916s~1). Therefore, it may be that in reality there would be
some geographical variation in the rate of unimolecular loss.

The monoterpene SCI-A + H,O reactions are expected to
lead to high yields of both large (e.g. Ma et al., 2008; Ma
and Marston, 2008) and small (measured in high yield in the
experiments presented here) organic acids.

Figure 8 shows the seasonal removal of SO, by reaction
with monoterpene-derived SCI, as a percentage of total gas-
phase SO, oxidation in the surface layer. Monoterpene SCIs
are most important (relative to OH) for SO, oxidation over
tropical forests, where they account for up to 60 % of the lo-
cal gas-phase SO, removal during DJF and MAM in some
regions. The reasons for this are two-fold: firstly, the high-
est modelled monoterpene SCI concentrations are found in
these regions (Fig. 7); additionally, OH concentrations in
the model are low over these areas (Fig. S2). Historically
there have been discrepancies between modelled and ob-
served OH concentrations over tropical forests, with mod-
els appearing to underpredict [OH] by up to a factor of 10
(e.g. Lelieveld et al., 2008). It was proposed that this was
due to missing sources of OH recycling during isoprene ox-
idation. During recent years there have been advances in
our understanding of isoprene chemistry. GEOS-Chem v-
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09, used here, includes an isoprene OH recycling scheme
largely based on Paulot et al. (2009a, b), with updates from
Peeters et al. (2009), Peeters and Miiller (2010) and Crounse
et al. (2011, 2012), and evaluated in Mao et al. (2013). How-
ever, more recent experimental and theoretical work is not
yet included.

Annually, monoterpene SCI oxidation accounts for 1.2 %
of the gas-phase SO, oxidation in the terrestrial tropics. This
accounts for the removal of 2.9 Gg of SO,. Across the north-
ern boreal forests, monoterpene SCIs contribute 0.7 % to gas-
phase SO; removal annually, removing 0.8 Gg of SO;. Glob-
ally, throughout the whole of the atmosphere, monoterpene
SClIs account for only 0.5 % of gas-phase SO, removal, re-
moving 8.1 Gg of SO, annually.

It is noted that MEGAN does not contain oceanic monoter-
pene emissions, which may increase the global importance
of SCIs for gas-phase SO, removal. Luo and Yu (2010) de-
termined annual global oceanic a-pinene emissions to be
29.5 TgC using a top-down approach, with only 0.013 (Luo
and Yu, 2010) — 0.26 (Hackenberg et al., 2017) TgC esti-
mated using a range of bottom-up approaches; clearly there
are large uncertainties in oceanic monoterpene emissions. At
the upper end of this range they could potentially provide a
similar contribution to SCI production and subsequent SO»
oxidation as monoterpenes emitted from the terrestrial bio-
sphere. SCI production could more generally be further am-
plified by sources such as marine-derived alkyl iodine pho-
tolysis.

Blitz et al. (2017) recently calculated a revised SO, + OH
reaction rate (ki(1bar N»)(298 K)=5.8 x 10~ B cm3s™1),
based on experimental work and a master equation analysis,
which is ~40 % lower than the rate given in the most re-
cent JPL data evaluation (Burkholder et al., 2015) ((k;(1 bar
N2)(298K) = 9.5 x 10~ ecm?s~!), which is used in the
GEOS-Chem model simulation. Figure S3 shows the in-
creased influence of monoterpene-derived SCIs on gas-phase
SO, oxidation if the alternative SO, 4+ OH rate is used. This
increased the impact of monoterpene SCIs to up to 67 % of
gas-phase SO, removal in regions of the tropical forests dur-
ing DJF and MAM, with the contribution of monoterpene
SClIs to global gas-phase SO, oxidation increasing to 0.7 %.

While certain monoterpenes appear to be more important
than others with regard to the production of SCIs which
will oxidise SO», these results are sensitive to the kinetics
used and the assumptions made for the monoterpenes not
studied experimentally here. Hence we do not attempt to
draw any conclusions about the relative importance of each
monoterpene from the modelling. Clearly the most impor-
tant monoterpenes will be those with high yields of SCI-B,
particularly if those SCI-B have a structure that hinders uni-
molecular decomposition (such as certain S-pinene-derived
SCD).
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8 Conclusions

We report results from an integrated experimental (simu-
lation chamber), theoretical (quantum chemical) and mod-
elling (global chemistry-transport simulation) study of the
impacts of monoterpene ozonolysis reactions on stabilised
Criegee intermediate (SCI) formation and SO, oxidation.
The ozonolysis of the monoterpenes «-pinene, S-pinene and
limonene have been shown to produce a structurally diverse
range of chemically distinct SCIs, with some showing lim-
ited sensitivity to/reaction with water vapour under near-
atmospheric humidity levels. A multi-component system is
required to explain the experimentally observed SO, removal
kinetics. A two-body model system based on the assumption
of a fraction of the SCIs produced being reactive towards wa-
ter (SCI-A; potentially contributing to the significant forma-
tion of a range of organic acids in the atmosphere) and a frac-
tion being relatively unreactive towards water (SCI-B), anal-
ogous to the structural dependencies observed for the sim-
pler CH3CHOO SCI system, has been shown to describe the
observed kinetic data reasonably well for all the monoter-
pene systems investigated and may form a computationally
affordable and conceptually accessible basis for the descrip-
tion of this chemistry within atmospheric models. Moreover
such an approach is required to accurately predict SCI con-
centrations, which will be underestimated if a simple average
of the properties of the two different SCI classes is used. The
atmospheric fate of SCI-B produced from the monoterpenes
studied here will be controlled by their removal by unimolec-
ular decomposition. In this work, we have experimentally de-
termined the monoterpene SCI-B decomposition rate to be
between 100 and 250s~!. This has significant implications
for the role of monoterpene-derived SCIs as oxidants in the
atmosphere. The fate of SCI-A will be reaction with water or
the water dimer, likely leading to the production of a range
of organic acids.

A theory-based analysis of the kinetics of the SCIs formed
from «-pinene, B-pinene ozonolysis has also been per-
formed, which complements the experimental work. The
identification of the likely SCI-A and SCI-B populations and
the derived kinetics agree with experimental observations
within the respective uncertainties.

A modelling study using the GEOS-Chem global 3-D
chemical transport model supplemented with the chemical
kinetics elucidated in this work suggests that the global
monoterpene-derived SCI burden will be dominated (>97 %)
by SCI-B. The highest annually averaged SCI concentrations
are found in the tropics, with seasonally averaged monoter-
pene SCI concentrations up to 1.4 x 10* cm™3 owing to large
monoterpene emissions. Across the boreal forest, average
SCI concentrations reach between 3 and 5 x 103 cm™3 dur-
ing the Northern Hemisphere summer. Oxidation of SO, by
monoterpene SCIs is shown to also be most important in the
tropics. While oxidation by SCIs contributes < 1% to gas-
phase SO, oxidation globally, over tropical forests this can
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rise to up to 60 % at certain times of the year. Monoter-
pene SCI-driven SO, oxidation will increase the production
of sulfate aerosol — affecting atmospheric radiation transfer
and hence climate — and reduce the atmospheric lifetime and
hence the transport of SO;. These effects will be substantial
in areas where monoterpene emissions are significant, in par-
ticular over the Amazon, central Africa and SE Asian rain-
forests.

Data availability. Experimental data and GEOS-Chem model out-
put are available at https://doi.org/10.15124/4e9cd832-9cce-41c8-
8335-c88cf32fe244 (Newland et al., 2013), and will subsequently
also be available in the Eurochamp database (www.eurochamp.org,
last access: 27 April 2018) from the H2020 EUROCHAMP2020
project, GA no. 730997. GEOS-Chem model code is available at
https://doi.org/10.5281/zenodo.1220385 and the model run direc-
tory is available at https://doi.org/10.5281/zenodo.1220387 (GEOS-
Chem team v9-02, 2018).
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