

Automatically generating HPC-optimized code for simulations
using neural mass models in The Virtual Brain

1. Forschungszentrum Jülich GmbH. Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC),
SimLab Neuroscience, JARA, 52425 Jülich, Germany

2. Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France

Motivation

High performance computing is becoming every day a more
accessible and desirable concept for researchers in
neuroscience.

Design code to utilize the full power of supercomputers, GPUs
and other computational accelerators in a dynamic,
maintainable, scalable and robust fashion.

Optimize the workflows and models currently available in The
Virtual Brain software (Sanz Leon et al. 2013).

Describe your neural mass model with a high level language.

Combine it with an integration kernel and a coupling kernel to
build a network workflow.

Define a post-processing kernel.

The active DSL model representation can be interrogated by
different providers to automatically generate and run platform
specific code.

Our approach

Automatic code generation

Neural Mass
Model kernel

Coupling
kernel

Post-Processing
kernel

Integration
kernel state

connection
weights

diffs

drift

input output

E I

J

Background Noise

Input from
other regions

Serial loop over time steps

osc = model.Kuramoto()
osc.dt = 1.0
osc.const['omega'] = 10.0 * 2.0 * np.pi / 1e3
cfun = coupling.Kuramoto(osc)
scm = scheme.EulerStep(osc.dt)
knl = transforms.network_time_step(osc, cfun, scm)

class Kuramoto(BaseModel):
 state = 'theta'
 limit = (0, 2 * np.pi),
 input = 'I'
 param = 'omega'
 drift = 'omega + I',

class Kuramoto(Diff):
 pre_sum = 'sin(
 pre_syn - post_syn)',
 post_sum =
 'g_coupling * mean',

def euler(x, f, dt=None):
 dt = dt or pm.var('dt')
 return x + dt * f

class BalloonWindkessel(BaseModel):
 state = 's f v q'
 drift = (
 'x - RT_S * s - RT_F * (f - 1)', 's',
 'RT_O * (f - v**RECIP_ALPHA)',
 'RT_O * (f * (1 - (1 - E0)**(1 / f)) * R0'
 ' - v**RECIP_ALPHA * (q / v))'
) ...

Parallel over parameter sets

knl = lp.to_batched(knl, subject, [a, delays],
i_subject, sequential=False)

Scales linearly:
10x bigger computer = 10x more data processed in the same time!

Sandra Diaz-Pier , Alexander Peyser , Marmaduke Woodman , Jan Fousek , Viktor Jirsa1 221

2

Acknowledgments
We would like to thank our collaborators Lia Domide, Mihai Andrei, Vlad Prunar, Petra
Ritter, Michael Schirner and Olaf Sporns. The authors would also like to acknowledge
the support by the Excellence Initiative of the German federal and state governments,
the JARA and CRCNS grant and the Helmholtz Association through the portfolio theme
SMHB and the Initiative and Networking Fund. In addition, this project has received
funding from the European Union's Horizon 2020 research and innovation program
under grant agreement No 720270 and 785907 (HBP SGA1 & 2).

Same high level code, multiple target platforms!

Numba Provider

Easy integration to python code.

Optimized routines which run on any
CPU.

JIT generation of LLVM code.

Flexibility to move into the CUDA
version of numba, which allows
seamless GPU usage from python.

OpenCL Provider

Benefit from different OpenCL platforms
like GPUs, CPUs and FPGAs.

High flexibility, clear code which can be

CUDA Provider

High performance utilizing the
computational capabilities of GPUs.

Enables large parallel parameter
searches in short time.

Discussion

Run on different architectures and accelerators like GPUs without
changing the top level description of the kernels.

Hidden complexity to the user, big computational power
underneath.

Great performance boost on GPUs.

Want to get involved in the development?
Take a look at our code:

https://github.com/the-virtual-brain/tvb-hpc

Example of automatically generated
code for a test kernel

Numba + CUDA Numba

@ncu.jit
def loopy_kernel_inner(
 n, nnz, row, col, dat, vec, out):
 if -1 + -512*bIdx.y + -1*tIdx.y + n >= 0
and -1 + -512*bIdx.x + -1*tIdx.x + n >= 0:
 acc_j = 0
 jhi = row[1 + tIdx.x + bIdx.x*512]
 jlo = row[tIdx.x + bIdx.x*512]
 for j in range(jlo, -1 + jhi + 1):
 acc_j = acc_j + dat[j]*vec[col[j]]
 out[tIdx.x + bIdx.x*512] =
 (tIdx.y + bIdx.y*512)*acc_j

def loopy_kernel(
 n, nnz, row, col, dat, vec, out):
 loopy_kernel_inner[((511 + n) // 512,
 (511 + n) // 512),
 (512, 512)]
 (n, nnz, row, col, dat, vec, out)

from __future__ import division, print_function

import numpy as _lpy_np
import numba as _lpy_numba

@_lpy_numba.jit
def loopy_kernel(n, nnz, row, col, dat, vec,
out):
 for i in range(0, -1 + n + 1):
 jhi = row[i + 1]
 jlo = row[i]
 for k in range(0, -1 + n + 1):
 acc_j = 0
 for j in range(jlo, -1 + jhi + 1):
 acc_j = acc_j + dat[j]*vec[col[j]]
 out[i] = k*acc_j

Performance results

Figure 1: Numba CUDA, Numba and OpenCL runs performed on the Jureca cluster (GPU partition) of the Jülich Supercomputing Centre
with a test kernel.

Numba CUDA speedup against Numba
for different load and #of threads

Execution times for different
targets and loads

S
p

e
e
d

u
p

Threads per block

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Target

We are hiring!
We are looking for software developers,
PhDs and PostDocs in related areas of
computational neuroscience to further

develop our HPC tools. If you are
interested in joining our project please
 send your CV to a.peyser@fz-juelich.de

Future work

Further development of the DSL.

Integration with hyperparameter optimization and interactive
visualization frameworks to enhance the parameter space
exploration power.

Integration with other simulation engines such as nest, Arbor and
Neuron.

Figure 2: Performance of the CUDA code using the Kuramoto model with changing global coupling and connection speed. a) Simulation
time of executing different numbers of parallel simulations on a single GPU. b) GPU occupancy with increasing number of parallel
simulations. c) Scaling over different numbers of GPUs with 21600 parallel simulations each. Runs performed on the Jureca cluster (GPU
partition) of the Jülich Supercomputing Centre

a) b) c)

CUDA code performance analysis

