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Motivation
 
High performance computing is becoming every day a more 
accessible and desirable concept for researchers in 
neuroscience.
 
Design code to utilize the full power of supercomputers, GPUs 
and other computational accelerators in a dynamic, 
maintainable, scalable and robust fashion.
 
Optimize the workflows and models currently available in The 
Virtual Brain software (Sanz Leon et al. 2013). 
 
 

Describe your neural mass model with a high level language.
 
Combine it with an integration kernel and a coupling kernel to 
build a network workflow.
 
Define a post-processing kernel.
 
The active DSL model representation can be interrogated by 
different providers to  automatically generate and run platform 
specific code.
 

Our approach
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Serial loop over time steps

osc = model.Kuramoto()
osc.dt = 1.0
osc.const['omega'] = 10.0 * 2.0 * np.pi / 1e3
cfun = coupling.Kuramoto(osc)
scm = scheme.EulerStep(osc.dt)
knl = transforms.network_time_step(osc, cfun, scm)
 
 

class Kuramoto(BaseModel):
    state = 'theta'
    limit = (0, 2 * np.pi),
    input = 'I'
    param = 'omega'
    drift = 'omega + I',

class Kuramoto(Diff):
    pre_sum = 'sin(
                pre_syn - post_syn)',
    post_sum = 
                'g_coupling * mean', 

def euler(x, f, dt=None):
    dt = dt or pm.var('dt')
    return x + dt * f

class BalloonWindkessel(BaseModel):
    state = 's f v q'
    drift = (
        'x - RT_S * s - RT_F * (f - 1)', 's',
        'RT_O * (f - v**RECIP_ALPHA)',
        'RT_O * (f * (1 - (1 - E0)**(1 / f)) * R0'
        ' - v**RECIP_ALPHA * (q / v))'
    ) ...

Parallel over parameter sets

knl = lp.to_batched(knl, subject, [a, delays], 
i_subject, sequential=False)

Scales linearly: 
10x bigger computer = 10x more data processed in the same time!
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Same high level code, multiple target platforms!

Numba Provider

Easy integration to python code.
 
Optimized routines which run on any 
CPU. 
 
JIT generation of LLVM code.
 
Flexibility to move into the CUDA 
version of numba, which allows 
seamless GPU usage from python. 

OpenCL Provider

Benefit from different OpenCL platforms 
like GPUs, CPUs and FPGAs.
 
High flexibility, clear code which can be 

CUDA Provider

High performance utilizing the 
computational capabilities of GPUs.
 
Enables large parallel parameter 
searches in short time. 

 

Discussion

Run on different architectures and accelerators like GPUs without 
changing the top level description of the kernels.
 
Hidden complexity to the user, big computational power 
underneath.
 
Great performance boost on GPUs.
 
 
 

Want to get involved in the development?
Take a look at our code: 

https://github.com/the-virtual-brain/tvb-hpc

Example of automatically generated 
code for a test kernel 

 
Numba + CUDA Numba

@ncu.jit
def loopy_kernel_inner(
    n, nnz, row, col, dat, vec, out):
    if -1 + -512*bIdx.y + -1*tIdx.y + n >= 0 
and -1 + -512*bIdx.x + -1*tIdx.x + n >= 0:
        acc_j = 0
        jhi = row[1 + tIdx.x + bIdx.x*512]
        jlo = row[tIdx.x + bIdx.x*512]
        for j in range(jlo, -1 + jhi + 1):
            acc_j = acc_j + dat[j]*vec[col[j]]
        out[tIdx.x + bIdx.x*512] = 
            (tIdx.y + bIdx.y*512)*acc_j
 
def loopy_kernel(
    n, nnz, row, col, dat, vec, out):
    loopy_kernel_inner[((511 + n) // 512,
                                    (511 + n) // 512),
                                    (512, 512)]
                   (n, nnz, row, col, dat, vec, out)
 

from __future__ import division, print_function
 
import numpy as _lpy_np
import numba as _lpy_numba
 
@_lpy_numba.jit
def loopy_kernel(n, nnz, row, col, dat, vec, 
out):
    for i in range(0, -1 + n + 1):
        jhi = row[i + 1]
        jlo = row[i]
        for k in range(0, -1 + n + 1):
            acc_j = 0
            for j in range(jlo, -1 + jhi + 1):
                acc_j = acc_j + dat[j]*vec[col[j]]
            out[i] = k*acc_j

Performance results

 

 

Figure 1: Numba CUDA, Numba and OpenCL runs performed on the Jureca cluster (GPU partition) of the Jülich Supercomputing Centre 
with a test kernel. 

Numba CUDA speedup against Numba 
for different load and #of threads

Execution times for different 
targets and loads
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Target

We are hiring!
We are looking for software developers, 
PhDs and PostDocs in related areas of 
computational neuroscience to further 

develop our HPC tools. If you are 
interested in joining our project please
 send your CV to a.peyser@fz-juelich.de

Future work

Further development of the DSL.
 
Integration with hyperparameter optimization and interactive 
visualization frameworks to enhance the parameter space 
exploration power.
 
Integration with other simulation engines such as nest, Arbor and 
Neuron.
 
 
 

Figure 2: Performance of the CUDA code using the Kuramoto model with changing global coupling and connection speed. a) Simulation 
time of executing different numbers of parallel simulations on a single GPU. b) GPU occupancy with increasing number of parallel 
simulations. c) Scaling over different numbers of GPUs with 21600 parallel simulations each. Runs performed on the Jureca cluster (GPU 
partition) of the Jülich Supercomputing Centre
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CUDA code performance analysis


