000857245 001__ 857245
000857245 005__ 20240712101010.0
000857245 0247_ $$2doi$$a10.5194/acp-18-12391-2018
000857245 0247_ $$2ISSN$$a1680-7316
000857245 0247_ $$2ISSN$$a1680-7324
000857245 0247_ $$2ISSN$$a=
000857245 0247_ $$2ISSN$$aAtmospheric
000857245 0247_ $$2ISSN$$achemistry
000857245 0247_ $$2ISSN$$aand
000857245 0247_ $$2ISSN$$aphysics
000857245 0247_ $$2ISSN$$a(Online)
000857245 0247_ $$2Handle$$a2128/20081
000857245 0247_ $$2WOS$$aWOS:000442775100004
000857245 0247_ $$2altmetric$$aaltmetric:47136580
000857245 037__ $$aFZJ-2018-06475
000857245 082__ $$a550
000857245 1001_ $$0P:(DE-Juel1)173726$$aTan, Zhaofeng$$b0$$eCorresponding author
000857245 245__ $$aWintertime photochemistry in Beijing: observations of ROx radical concentrations in the North China Plain during the BEST-ONE campaign
000857245 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000857245 3367_ $$2DRIVER$$aarticle
000857245 3367_ $$2DataCite$$aOutput Types/Journal article
000857245 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542352757_3932
000857245 3367_ $$2BibTeX$$aARTICLE
000857245 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857245 3367_ $$00$$2EndNote$$aJournal Article
000857245 520__ $$aThe first wintertime in situ measurements of hydroxyl (OH), hydroperoxy (HO2) and organic peroxy (RO2) radicals (ROx = OH + HO2 + RO2) in combination with observations of total reactivity of OH radicals, kOH in Beijing are presented. The field campaign "Beijing winter finE particle STudy – Oxidation, Nucleation and light Extinctions" (BEST-ONE) was conducted at the suburban site Huairou near Beijing from January to March 2016. It aimed to understand oxidative capacity during wintertime and to elucidate the secondary pollutants' formation mechanism in the North China Plain (NCP). OH radical concentrations at noontime ranged from 2.4×106 cm−3 in severely polluted air (kOH ∼ 27 s−1) to 3.6×106 cm−3 in relatively clean air (kOH ∼ 5 s−1). These values are nearly 2-fold larger than OH concentrations observed in previous winter campaigns in Birmingham, Tokyo, and New York City. During this campaign, the total primary production rate of ROx radicals was dominated by the photolysis of nitrous acid accounting for 46% of the identified primary production pathways for ROx radicals. Other important radical sources were alkene ozonolysis (28%) and photolysis of oxygenated organic compounds (24%). A box model was used to simulate the OH, HO2 and RO2 concentrations based on the observations of their long-lived precursors. The model was capable of reproducing the observed diurnal variation of the OH and peroxy radicals during clean days with a factor of 1.5. However, it largely underestimated HO2 and RO2 concentrations by factors up to 5 during pollution episodes. The HO2 and RO2 observed-to-modeled ratios increased with increasing NO concentrations, indicating a deficit in our understanding of the gas-phase chemistry in the high NOx regime. The OH concentrations observed in the presence of large OH reactivities indicate that atmospheric trace gas oxidation by photochemical processes can be highly effective even during wintertime, thereby facilitating the vigorous formation of secondary pollutants.
000857245 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000857245 588__ $$aDataset connected to CrossRef
000857245 7001_ $$0P:(DE-Juel1)16347$$aRohrer, Franz$$b1
000857245 7001_ $$00000-0001-9425-9520$$aLu, Keding$$b2
000857245 7001_ $$0P:(DE-Juel1)168298$$aMa, Xuefei$$b3
000857245 7001_ $$0P:(DE-Juel1)2693$$aBohn, Birger$$b4
000857245 7001_ $$0P:(DE-Juel1)7591$$aBroch, Sebastian$$b5
000857245 7001_ $$0P:(DE-HGF)0$$aDong, Huabin$$b6
000857245 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b7
000857245 7001_ $$0P:(DE-HGF)0$$aGkatzelis, Georgios I.$$b8
000857245 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, Andreas$$b9
000857245 7001_ $$0P:(DE-Juel1)16342$$aHolland, Frank$$b10
000857245 7001_ $$00000-0003-2322-4069$$aLi, Xin$$b11
000857245 7001_ $$00000-0001-5139-0211$$aLiu, Ying$$b12
000857245 7001_ $$0P:(DE-HGF)0$$aLiu, Yuhan$$b13
000857245 7001_ $$0P:(DE-Juel1)166537$$aNovelli, Anna$$b14
000857245 7001_ $$0P:(DE-HGF)0$$aShao, Min$$b15
000857245 7001_ $$00000-0001-6161-1874$$aWang, Haichao$$b16
000857245 7001_ $$00000-0001-7548-8272$$aWu, Yusheng$$b17
000857245 7001_ $$0P:(DE-HGF)0$$aZeng, Limin$$b18
000857245 7001_ $$0P:(DE-HGF)0$$aHu, Min$$b19
000857245 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b20
000857245 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b21
000857245 7001_ $$0P:(DE-HGF)0$$aZhang, Yuanhang$$b22
000857245 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-12391-2018$$gVol. 18, no. 16, p. 12391 - 12411$$n16$$p12391 - 12411$$tAtmospheric chemistry and physics$$v18$$x1680-7324$$y2018
000857245 8564_ $$uhttps://juser.fz-juelich.de/record/857245/files/acp-18-12391-2018.pdf$$yOpenAccess
000857245 8564_ $$uhttps://juser.fz-juelich.de/record/857245/files/acp-18-12391-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857245 909CO $$ooai:juser.fz-juelich.de:857245$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000857245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173726$$aForschungszentrum Jülich$$b0$$kFZJ
000857245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich$$b1$$kFZJ
000857245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich$$b4$$kFZJ
000857245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b7$$kFZJ
000857245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich$$b9$$kFZJ
000857245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16342$$aForschungszentrum Jülich$$b10$$kFZJ
000857245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166537$$aForschungszentrum Jülich$$b14$$kFZJ
000857245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b20$$kFZJ
000857245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b21$$kFZJ
000857245 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000857245 9141_ $$y2018
000857245 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857245 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000857245 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857245 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000857245 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000857245 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000857245 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857245 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857245 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857245 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857245 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000857245 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000857245 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857245 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857245 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857245 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000857245 9801_ $$aFullTexts
000857245 980__ $$ajournal
000857245 980__ $$aVDB
000857245 980__ $$aUNRESTRICTED
000857245 980__ $$aI:(DE-Juel1)IEK-8-20101013
000857245 981__ $$aI:(DE-Juel1)ICE-3-20101013