000857247 001__ 857247
000857247 005__ 20240712101024.0
000857247 0247_ $$2doi$$a10.5194/acp-18-12241-2018
000857247 0247_ $$2ISSN$$a1680-7316
000857247 0247_ $$2ISSN$$a1680-7324
000857247 0247_ $$2ISSN$$a=
000857247 0247_ $$2ISSN$$aAtmospheric
000857247 0247_ $$2ISSN$$achemistry
000857247 0247_ $$2ISSN$$aand
000857247 0247_ $$2ISSN$$aphysics
000857247 0247_ $$2ISSN$$a(Online)
000857247 0247_ $$2Handle$$a2128/20082
000857247 0247_ $$2WOS$$aWOS:000442577800001
000857247 0247_ $$2altmetric$$aaltmetric:46893293
000857247 037__ $$aFZJ-2018-06477
000857247 082__ $$a550
000857247 1001_ $$00000-0003-0487-3610$$aGuo, Hongyu$$b0$$eCorresponding author
000857247 245__ $$aEffectiveness of ammonia reduction on control of fine particle nitrate
000857247 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000857247 3367_ $$2DRIVER$$aarticle
000857247 3367_ $$2DataCite$$aOutput Types/Journal article
000857247 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542353125_1300
000857247 3367_ $$2BibTeX$$aARTICLE
000857247 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857247 3367_ $$00$$2EndNote$$aJournal Article
000857247 520__ $$aIn some regions, reducing aerosol ammonium nitrate (NH4NO3) concentrations may substantially improve air quality. This can be accomplished by reductions in precursor emissions, such as nitrogen oxides (NOx) to lower nitric acid (HNO3) that partitions to the aerosol, or reductions in ammonia (NH3) to lower particle pH and keep HNO3 in the gas phase. Using the ISORROPIA-II thermodynamic aerosol model and detailed observational data sets, we explore the sensitivity of aerosol NH4NO3 to gas-phase NH3 and NOx controls for a number of contrasting locations, including Europe, the United States, and China. NOx control is always effective, whereas the aerosol response to NH3 control is highly nonlinear and only becomes effective at a thermodynamic sweet spot. The analysis provides a conceptual framework and fundamental evaluation on the relative value of NOx versus NH3 control and demonstrates the relevance of pH as an air quality parameter. We find that, regardless of the locations examined, it is only when ambient particle pH drops below an approximate critical value of 3 (slightly higher in warm and slightly lower in cold seasons) that NH3 reduction leads to an effective response in PM2.5 mass. The required amount of NH3 reduction to reach the critical pH and efficiently decrease NH4NO3 at different sites is assessed. Owing to the linkage between NH3 emissions and agricultural productivity, the substantial NH3 reduction required in some locations may not be feasible. Finally, controlling NH3 emissions to increase aerosol acidity and evaporate NH4NO3 will have other effects, beyond reduction of PM2.5 NH4NO3, such as increasing aerosol toxicity and potentially altering the deposition patterns of nitrogen and trace nutrients.
000857247 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000857247 588__ $$aDataset connected to CrossRef
000857247 7001_ $$0P:(DE-HGF)0$$aOtjes, Rene$$b1
000857247 7001_ $$0P:(DE-Juel1)4548$$aSchlag, Patrick$$b2
000857247 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b3
000857247 7001_ $$0P:(DE-HGF)0$$aNenes, Athanasios$$b4
000857247 7001_ $$0P:(DE-HGF)0$$aWeber, Rodney J.$$b5
000857247 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-12241-2018$$gVol. 18, no. 16, p. 12241 - 12256$$n16$$p12241 - 12256$$tAtmospheric chemistry and physics$$v18$$x1680-7324$$y2018
000857247 8564_ $$uhttps://juser.fz-juelich.de/record/857247/files/acp-18-12241-2018.pdf$$yOpenAccess
000857247 8564_ $$uhttps://juser.fz-juelich.de/record/857247/files/acp-18-12241-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857247 909CO $$ooai:juser.fz-juelich.de:857247$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000857247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b3$$kFZJ
000857247 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000857247 9141_ $$y2018
000857247 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857247 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000857247 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857247 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000857247 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000857247 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000857247 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857247 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857247 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857247 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857247 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000857247 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000857247 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857247 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857247 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857247 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000857247 9801_ $$aFullTexts
000857247 980__ $$ajournal
000857247 980__ $$aVDB
000857247 980__ $$aUNRESTRICTED
000857247 980__ $$aI:(DE-Juel1)IEK-8-20101013
000857247 981__ $$aI:(DE-Juel1)ICE-3-20101013