000857251 001__ 857251
000857251 005__ 20240712101042.0
000857251 0247_ $$2doi$$a10.5194/acp-18-10759-2018
000857251 0247_ $$2ISSN$$a1680-7316
000857251 0247_ $$2ISSN$$a1680-7324
000857251 0247_ $$2ISSN$$a=
000857251 0247_ $$2ISSN$$aAtmospheric
000857251 0247_ $$2ISSN$$achemistry
000857251 0247_ $$2ISSN$$aand
000857251 0247_ $$2ISSN$$aphysics
000857251 0247_ $$2ISSN$$a(Online)
000857251 0247_ $$2Handle$$a2128/20073
000857251 0247_ $$2WOS$$aWOS:000440012400002
000857251 0247_ $$2altmetric$$aaltmetric:45611541
000857251 037__ $$aFZJ-2018-06480
000857251 082__ $$a550
000857251 1001_ $$0P:(DE-HGF)0$$aKarnezi, Eleni$$b0$$eCorresponding author
000857251 245__ $$aSimulation of atmospheric organic aerosol using its volatility–oxygen-content distribution during the PEGASOS 2012 campaign
000857251 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000857251 3367_ $$2DRIVER$$aarticle
000857251 3367_ $$2DataCite$$aOutput Types/Journal article
000857251 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542287804_7702
000857251 3367_ $$2BibTeX$$aARTICLE
000857251 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857251 3367_ $$00$$2EndNote$$aJournal Article
000857251 520__ $$aA lot of effort has been made to understand and constrain the atmospheric aging of the organic aerosol (OA). Different parameterizations of the organic aerosol formation and evolution in the two-dimensional volatility basis set (2D-VBS) framework are evaluated using ground and airborne measurements collected in the 2012 Pan-European Gas AeroSOls-climate interaction Study (PEGASOS) field campaign in the Po Valley (Italy). A number of chemical aging schemes are examined, taking into account various functionalization and fragmentation pathways for biogenic and anthropogenic OA components. Model predictions and measurements, both at the ground and aloft, indicate a relatively oxidized OA with little average diurnal variation. Total OA concentration and O : C ratios are reproduced within experimental error by a number of chemical aging schemes. Anthropogenic secondary OA (SOA) is predicted to contribute 15–25% of the total OA, while SOA from intermediate volatility compound oxidation contributes another 20–35%. Biogenic SOA (bSOA) contributions varied from 15 to 45% depending on the modeling scheme. Primary OA contributed around 5% for all schemes and was comparable to the hydrocarbon-like OA (HOA) concentrations derived from the positive matrix factorization of the aerosol mass spectrometer (PMF-AMS) ground measurements. The average OA and O : C diurnal variation and their vertical profiles showed a surprisingly modest sensitivity to the assumed vaporization enthalpy for all aging schemes. This can be explained by the interplay between the partitioning of the semi-volatile compounds and their gas-phase chemical aging reactions.
000857251 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000857251 588__ $$aDataset connected to CrossRef
000857251 7001_ $$0P:(DE-HGF)0$$aMurphy, Benjamin N.$$b1
000857251 7001_ $$0P:(DE-HGF)0$$aPoulain, Laurent$$b2
000857251 7001_ $$00000-0001-7044-2101$$aHerrmann, Hartmut$$b3
000857251 7001_ $$0P:(DE-HGF)0$$aWiedensohler, Alfred$$b4
000857251 7001_ $$00000-0002-6144-2799$$aRubach, Florian$$b5
000857251 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b6
000857251 7001_ $$0P:(DE-Juel1)16346$$aMentel, Thomas F.$$b7
000857251 7001_ $$0P:(DE-HGF)0$$aPandis, Spyros N.$$b8
000857251 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-10759-2018$$gVol. 18, no. 14, p. 10759 - 10772$$n14$$p10759 - 10772$$tAtmospheric chemistry and physics$$v18$$x1680-7324$$y2018
000857251 8564_ $$uhttps://juser.fz-juelich.de/record/857251/files/acp-18-10759-2018.pdf$$yOpenAccess
000857251 8564_ $$uhttps://juser.fz-juelich.de/record/857251/files/acp-18-10759-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857251 909CO $$ooai:juser.fz-juelich.de:857251$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000857251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b6$$kFZJ
000857251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich$$b7$$kFZJ
000857251 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000857251 9141_ $$y2018
000857251 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857251 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000857251 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857251 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000857251 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000857251 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000857251 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857251 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857251 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857251 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857251 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000857251 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000857251 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857251 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857251 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857251 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000857251 9801_ $$aFullTexts
000857251 980__ $$ajournal
000857251 980__ $$aVDB
000857251 980__ $$aUNRESTRICTED
000857251 980__ $$aI:(DE-Juel1)IEK-8-20101013
000857251 981__ $$aI:(DE-Juel1)ICE-3-20101013