Using deep learning to predict statistics of turbulent flows at high Reynolds numbers

CoordinatorPitsch, Heinz
Grant period2018-05-01 - 2019-04-30
Funding bodyVSR/JARA
IdentifierG:(DE-Juel1)jhpc55_20180501

Using deep learning to predict statistics of turbulent flows at high Reynolds numbers

Note: JSC computation time grant
 

Recent Publications

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Preprint  ;  ;  ;  ;  ;  ;  ;
Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows
OpenAccess  Download fulltext Files  Download fulltextFulltext Download fulltextFulltext by OpenAccess repository Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Contribution to a conference proceedings/Contribution to a book  ;  ;  ;  ;  ;
Towards Prediction of Turbulent Flows at High Reynolds Numbers Using High Performance Computing Data and Deep Learning
High Performance Computing
International Conference on High Performance Computing, FrankfurtFrankfurt, Germany, 24 Jun 2018 - 28 Jun 20182018-06-242018-06-28
Cham : Springer International Publishing, Lecture Notes in Computer Science 11203, 614 - 623 () [10.1007/978-3-030-02465-9_44] special issue: "ISC High Performance 2018 International Workshops" BibTeX | EndNote: XML, Text | RIS

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 


 Record created 2018-11-19, last modified 2020-09-21



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)