| 001 | 857529 | ||
| 005 | 20240625095126.0 | ||
| 024 | 7 | _ | |a 10.1021/acs.jpclett.8b02380 |2 doi |
| 024 | 7 | _ | |a pmid:30358398 |2 pmid |
| 024 | 7 | _ | |a WOS:000451362100002 |2 WOS |
| 024 | 7 | _ | |a altmetric:50263361 |2 altmetric |
| 024 | 7 | _ | |a 2128/22891 |2 Handle |
| 037 | _ | _ | |a FZJ-2018-06520 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Maggi, Luca |0 P:(DE-Juel1)169313 |b 0 |u fzj |
| 245 | _ | _ | |a Vibrational Energy in Proteins Correlates with Topology |
| 260 | _ | _ | |a Washington, DC |c 2018 |b ACS |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1552653860_21968 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The exchange of vibrational energy in proteins is crucial for their function. Here, we establish a connection between quantities related to it with geometry-based properties such as the proteins’ residues coordination number. This relation is proven by molecular simulation in a neuro-pharmacologically relevant transmembrane receptor. The connection demonstrated here paves the way to studies of protein allostery and conformational changes based solely on protein structure |
| 536 | _ | _ | |a 571 - Connectivity and Activity (POF3-571) |0 G:(DE-HGF)POF3-571 |c POF3-571 |f POF III |x 0 |
| 536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 1 |
| 536 | _ | _ | |a Towards the design of allosteric ligands binding to the human muscarinic receptor M2 (jias59_20161101) |0 G:(DE-Juel1)jias59_20161101 |c jias59_20161101 |f Towards the design of allosteric ligands binding to the human muscarinic receptor M2 |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Carloni, P. |0 P:(DE-Juel1)145614 |b 1 |
| 700 | 1 | _ | |a Rossetti, G. |0 P:(DE-Juel1)145921 |b 2 |e Corresponding author |
| 773 | _ | _ | |a 10.1021/acs.jpclett.8b02380 |g Vol. 9, no. 22, p. 6393 - 6398 |0 PERI:(DE-600)2522838-9 |n 22 |p 6393 - 6398 |t The journal of physical chemistry letters |v 9 |y 2018 |x 1948-7185 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/857529/files/acs.jpclett.8b02380.pdf |y Restricted |
| 856 | 4 | _ | |y Published on 2018-10-14. Available in OpenAccess from 2019-10-14. |u https://juser.fz-juelich.de/record/857529/files/Article1_resubmission_final.pdf |
| 856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/857529/files/acs.jpclett.8b02380.pdf?subformat=pdfa |y Restricted |
| 856 | 4 | _ | |y Published on 2018-10-14. Available in OpenAccess from 2019-10-14. |x pdfa |u https://juser.fz-juelich.de/record/857529/files/Article1_resubmission_final.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:857529 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)169313 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)145614 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145921 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-571 |2 G:(DE-HGF)POF3-500 |v Connectivity and Activity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PHYS CHEM LETT : 2017 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J PHYS CHEM LETT : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 2 |
| 920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-82)080012_20140620 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|