000857534 001__ 857534
000857534 005__ 20240625085715.0
000857534 020__ $$a978-1-4939-8587-6 (print)
000857534 020__ $$a978-1-4939-8588-3 (electronic)
000857534 0247_ $$2doi$$a10.1007/978-1-4939-8588-3_4
000857534 0247_ $$2ISSN$$a1064-3745
000857534 0247_ $$2ISSN$$a1940-6029
000857534 0247_ $$2pmid$$apmid:30097860
000857534 0247_ $$2WOS$$aWOS:000454740000005
000857534 037__ $$aFZJ-2018-06525
000857534 082__ $$a570
000857534 1001_ $$0P:(DE-HGF)0$$aChang, Paul$$b0$$eEditor
000857534 245__ $$aAssessment of Intracellular Auto-Modification Levels of ARTD10 Using Mono-ADP-Ribose-Specific Macrodomains 2 and 3 of Murine Artd8
000857534 260__ $$aNew York, NY$$bSpringer New York$$c2018
000857534 29510 $$aADP-ribosylation and NAD+ Utilizing Enzymes / Chang, Paul (Editor) ; New York, NY : Springer New York, 2018, Chapter 4 ; ISSN: 1064-3745=1940-6029 ; ISBN: 978-1-4939-8587-6=978-1-4939-8588-3 ; doi:10.1007/978-1-4939-8588-3
000857534 300__ $$a41 - 63
000857534 3367_ $$2ORCID$$aBOOK_CHAPTER
000857534 3367_ $$07$$2EndNote$$aBook Section
000857534 3367_ $$2DRIVER$$abookPart
000857534 3367_ $$2BibTeX$$aINBOOK
000857534 3367_ $$2DataCite$$aOutput Types/Book chapter
000857534 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1547622976_3400
000857534 4900_ $$aMethods in Molecular Biology$$v1813
000857534 520__ $$aMono-ADP-ribosylation is a posttranslational modification, which is catalyzed in cells by certain members of the ADP-ribosyltransferase diphtheria toxin-like family (ARTD) of ADP-ribosyltransferases (aka PARP enzymes). It involves the transfer of a single residue of ADP-ribose (ADPr) from the cofactor NAD+ onto substrate proteins. Although 12 of the 17 members of the ARTD family have been defined as mono-ARTDs in in vitro assays, relatively little is known about their exact cellular functions. A major challenge is the detection of mono-ADP-ribosylated (MARylated) proteins in cells as no antibodies are available that detect exclusively MARylated proteins. As an alternative to classical antibodies, the MAR-specific binding domains macro2 and macro3 of Artd8 can be utilized alone or in combination, to demonstrate intracellular auto-modification levels of ARTD10 in cells in both co-immunoprecipitation and co-localization experiments. Here we demonstrate that different macrodomain constructs of human ARTD8 and murine Artd8, alone or in combination, exert differences with regard to their interaction with ARTD10 in cells. Precisely, while the macrodomains of murine Artd8 interacted with ARTD10 in cells in a MARylation-dependent manner, the macrodomains of human ARTD8 interacted with ARTD10 independent of its catalytic activity. Moreover, we show that a combination of macro2 and macro3 of murine Artd8 was recruited more efficiently to ARTD10 during co-localization experiments compared to the single domains. Therefore, murine Artd8 macrodomain constructs can serve as a tool to evaluate intracellular ARTD10 auto-modification levels using the described methods, while the human ARTD8 macrodomains are less suited because of ADPr-independent binding to ARTD10. Protocols for co-immunoprecipitation and co-localization experiments are described in detail.
000857534 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000857534 588__ $$aDataset connected to CrossRef Book Series
000857534 7001_ $$0P:(DE-HGF)0$$aBütepage, Mareike$$b1$$eCorresponding author
000857534 7001_ $$0P:(DE-HGF)0$$aKrieg, Sarah$$b2
000857534 7001_ $$0P:(DE-HGF)0$$aEckei, Laura$$b3
000857534 7001_ $$0P:(DE-Juel1)166112$$aLi, Jinyu$$b4
000857534 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b5$$ufzj
000857534 7001_ $$0P:(DE-HGF)0$$aVerheugd, Patricia$$b6
000857534 7001_ $$0P:(DE-HGF)0$$aLüscher, Bernhard$$b7$$eCorresponding author
000857534 773__ $$a10.1007/978-1-4939-8588-3_4
000857534 909CO $$ooai:juser.fz-juelich.de:857534$$pVDB
000857534 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich$$b5$$kFZJ
000857534 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000857534 9141_ $$y2018
000857534 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857534 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857534 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857534 920__ $$lyes
000857534 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000857534 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000857534 980__ $$acontb
000857534 980__ $$aVDB
000857534 980__ $$aI:(DE-Juel1)IAS-5-20120330
000857534 980__ $$aI:(DE-Juel1)JSC-20090406
000857534 980__ $$aUNRESTRICTED
000857534 981__ $$aI:(DE-Juel1)INM-9-20140121