000857541 001__ 857541
000857541 005__ 20240712101034.0
000857541 0247_ $$2doi$$a10.5194/gmd-11-3833-2018
000857541 0247_ $$2ISSN$$a1991-959X
000857541 0247_ $$2ISSN$$a1991-9603
000857541 0247_ $$2Handle$$a2128/20123
000857541 0247_ $$2WOS$$aWOS:000445698200001
000857541 0247_ $$2altmetric$$aaltmetric:51672482
000857541 037__ $$aFZJ-2018-06532
000857541 082__ $$a550
000857541 1001_ $$00000-0002-1404-6670$$aKokkola, Harri$$b0$$eCorresponding author
000857541 245__ $$aSALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0
000857541 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2018
000857541 3367_ $$2DRIVER$$aarticle
000857541 3367_ $$2DataCite$$aOutput Types/Journal article
000857541 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544104613_16464
000857541 3367_ $$2BibTeX$$aARTICLE
000857541 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857541 3367_ $$00$$2EndNote$$aJournal Article
000857541 520__ $$aIn this paper, we present the implementation and evaluation of the aerosol microphysics module SALSA2.0 in the framework of the aerosol–chemistry–climate model ECHAM-HAMMOZ. It is an alternative microphysics module to the default modal microphysics scheme M7 in ECHAM-HAMMOZ. The SALSA2.0 implementation within ECHAM-HAMMOZ is evaluated against observations of aerosol optical properties, aerosol mass, and size distributions, comparing also to the skill of the M7 implementation. The largest differences between the implementation of SALSA2.0 and M7 are in the methods used for calculating microphysical processes, i.e., nucleation, condensation, coagulation, and hydration. These differences in the microphysics are reflected in the results so that the largest differences between SALSA2.0 and M7 are evident over regions where the aerosol size distribution is heavily modified by the microphysical processing of aerosol particles. Such regions are, for example, highly polluted regions and regions strongly affected by biomass burning. In addition, in a simulation of the 1991 Mt. Pinatubo eruption in which a stratospheric sulfate plume was formed, the global burden and the effective radii of the stratospheric aerosol are very different in SALSA2.0 and M7. While SALSA2.0 was able to reproduce the observed time evolution of the global burden of sulfate and the effective radii of stratospheric aerosol, M7 strongly overestimates the removal of coarse stratospheric particles and thus underestimates the effective radius of stratospheric aerosol. As the mode widths of M7 have been optimized for the troposphere and were not designed to represent stratospheric aerosol, the ability of M7 to simulate the volcano plume was improved by modifying the mode widths, decreasing the standard deviations of the accumulation and coarse modes from 1.59 and 2.0, respectively, to 1.2 similar to what was observed after the Mt. Pinatubo eruption. Overall, SALSA2.0 shows promise in improving the aerosol description of ECHAM-HAMMOZ and can be further improved by implementing methods for aerosol processes that are more suitable for the sectional method, e.g., size-dependent emissions for aerosol species and size-resolved wet deposition.
000857541 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000857541 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x1
000857541 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x2
000857541 588__ $$aDataset connected to CrossRef
000857541 7001_ $$0P:(DE-HGF)0$$aKühn, Thomas$$b1
000857541 7001_ $$0P:(DE-HGF)0$$aLaakso, Anton$$b2
000857541 7001_ $$00000-0002-6133-2231$$aBergman, Tommi$$b3
000857541 7001_ $$0P:(DE-HGF)0$$aLehtinen, Kari E. J.$$b4
000857541 7001_ $$0P:(DE-HGF)0$$aMielonen, Tero$$b5
000857541 7001_ $$0P:(DE-HGF)0$$aArola, Antti$$b6
000857541 7001_ $$0P:(DE-Juel1)164575$$aStadtler, Scarlet$$b7
000857541 7001_ $$00000-0001-6264-0706$$aKorhonen, Hannele$$b8
000857541 7001_ $$0P:(DE-HGF)0$$aFerrachat, Sylvaine$$b9
000857541 7001_ $$00000-0001-8885-3785$$aLohmann, Ulrike$$b10
000857541 7001_ $$0P:(DE-HGF)0$$aNeubauer, David$$b11
000857541 7001_ $$00000-0003-3700-3232$$aTegen, Ina$$b12
000857541 7001_ $$0P:(DE-HGF)0$$aSiegenthaler-Le Drian, Colombe$$b13
000857541 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin G.$$b14
000857541 7001_ $$0P:(DE-HGF)0$$aBey, Isabelle$$b15
000857541 7001_ $$00000-0002-1191-0128$$aStier, Philip$$b16
000857541 7001_ $$00000-0002-2409-0392$$aDaskalakis, Nikos$$b17
000857541 7001_ $$00000-0003-2894-5738$$aHeald, Colette L.$$b18
000857541 7001_ $$0P:(DE-HGF)0$$aRomakkaniemi, Sami$$b19
000857541 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-11-3833-2018$$gVol. 11, no. 9, p. 3833 - 3863$$n9$$p3833 - 3863$$tGeoscientific model development$$v11$$x1991-9603$$y2018
000857541 8564_ $$uhttps://juser.fz-juelich.de/record/857541/files/gmd-11-3833-2018.pdf$$yOpenAccess
000857541 8564_ $$uhttps://juser.fz-juelich.de/record/857541/files/gmd-11-3833-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857541 909CO $$ooai:juser.fz-juelich.de:857541$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000857541 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164575$$aForschungszentrum Jülich$$b7$$kFZJ
000857541 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b14$$kFZJ
000857541 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000857541 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x1
000857541 9141_ $$y2018
000857541 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857541 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000857541 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857541 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2017
000857541 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000857541 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000857541 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857541 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857541 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857541 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857541 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857541 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857541 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857541 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000857541 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000857541 9801_ $$aFullTexts
000857541 980__ $$ajournal
000857541 980__ $$aVDB
000857541 980__ $$aI:(DE-Juel1)IEK-8-20101013
000857541 980__ $$aI:(DE-Juel1)JSC-20090406
000857541 980__ $$aUNRESTRICTED
000857541 981__ $$aI:(DE-Juel1)ICE-3-20101013