001     857541
005     20240712101034.0
024 7 _ |a 10.5194/gmd-11-3833-2018
|2 doi
024 7 _ |a 1991-959X
|2 ISSN
024 7 _ |a 1991-9603
|2 ISSN
024 7 _ |a 2128/20123
|2 Handle
024 7 _ |a WOS:000445698200001
|2 WOS
024 7 _ |a altmetric:51672482
|2 altmetric
037 _ _ |a FZJ-2018-06532
082 _ _ |a 550
100 1 _ |a Kokkola, Harri
|0 0000-0002-1404-6670
|b 0
|e Corresponding author
245 _ _ |a SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0
260 _ _ |a Katlenburg-Lindau
|c 2018
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544104613_16464
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper, we present the implementation and evaluation of the aerosol microphysics module SALSA2.0 in the framework of the aerosol–chemistry–climate model ECHAM-HAMMOZ. It is an alternative microphysics module to the default modal microphysics scheme M7 in ECHAM-HAMMOZ. The SALSA2.0 implementation within ECHAM-HAMMOZ is evaluated against observations of aerosol optical properties, aerosol mass, and size distributions, comparing also to the skill of the M7 implementation. The largest differences between the implementation of SALSA2.0 and M7 are in the methods used for calculating microphysical processes, i.e., nucleation, condensation, coagulation, and hydration. These differences in the microphysics are reflected in the results so that the largest differences between SALSA2.0 and M7 are evident over regions where the aerosol size distribution is heavily modified by the microphysical processing of aerosol particles. Such regions are, for example, highly polluted regions and regions strongly affected by biomass burning. In addition, in a simulation of the 1991 Mt. Pinatubo eruption in which a stratospheric sulfate plume was formed, the global burden and the effective radii of the stratospheric aerosol are very different in SALSA2.0 and M7. While SALSA2.0 was able to reproduce the observed time evolution of the global burden of sulfate and the effective radii of stratospheric aerosol, M7 strongly overestimates the removal of coarse stratospheric particles and thus underestimates the effective radius of stratospheric aerosol. As the mode widths of M7 have been optimized for the troposphere and were not designed to represent stratospheric aerosol, the ability of M7 to simulate the volcano plume was improved by modifying the mode widths, decreasing the standard deviations of the accumulation and coarse modes from 1.59 and 2.0, respectively, to 1.2 similar to what was observed after the Mt. Pinatubo eruption. Overall, SALSA2.0 shows promise in improving the aerosol description of ECHAM-HAMMOZ and can be further improved by implementing methods for aerosol processes that are more suitable for the sectional method, e.g., size-dependent emissions for aerosol species and size-resolved wet deposition.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 1
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kühn, Thomas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Laakso, Anton
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bergman, Tommi
|0 0000-0002-6133-2231
|b 3
700 1 _ |a Lehtinen, Kari E. J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mielonen, Tero
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Arola, Antti
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Stadtler, Scarlet
|0 P:(DE-Juel1)164575
|b 7
700 1 _ |a Korhonen, Hannele
|0 0000-0001-6264-0706
|b 8
700 1 _ |a Ferrachat, Sylvaine
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Lohmann, Ulrike
|0 0000-0001-8885-3785
|b 10
700 1 _ |a Neubauer, David
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Tegen, Ina
|0 0000-0003-3700-3232
|b 12
700 1 _ |a Siegenthaler-Le Drian, Colombe
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 14
700 1 _ |a Bey, Isabelle
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Stier, Philip
|0 0000-0002-1191-0128
|b 16
700 1 _ |a Daskalakis, Nikos
|0 0000-0002-2409-0392
|b 17
700 1 _ |a Heald, Colette L.
|0 0000-0003-2894-5738
|b 18
700 1 _ |a Romakkaniemi, Sami
|0 P:(DE-HGF)0
|b 19
773 _ _ |a 10.5194/gmd-11-3833-2018
|g Vol. 11, no. 9, p. 3833 - 3863
|0 PERI:(DE-600)2456725-5
|n 9
|p 3833 - 3863
|t Geoscientific model development
|v 11
|y 2018
|x 1991-9603
856 4 _ |u https://juser.fz-juelich.de/record/857541/files/gmd-11-3833-2018.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/857541/files/gmd-11-3833-2018.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:857541
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)164575
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOSCI MODEL DEV : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21