000857550 001__ 857550
000857550 005__ 20240712112832.0
000857550 0247_ $$2doi$$a10.1021/acs.nanolett.8b03572
000857550 0247_ $$2ISSN$$a1530-6984
000857550 0247_ $$2ISSN$$a1530-6992
000857550 0247_ $$2pmid$$apmid:30407013
000857550 0247_ $$2WOS$$aWOS:000453488800051
000857550 037__ $$aFZJ-2018-06541
000857550 041__ $$aEnglish
000857550 082__ $$a660
000857550 1001_ $$00000-0003-1221-1748$$aXiang, Guolei$$b0$$eCorresponding author
000857550 245__ $$aProbing Ligand-Induced Cooperative Orbital Redistribution That Dominates Nanoscale Molecule–Surface Interactions with One-Unit-Thin TiO 2 Nanosheets
000857550 260__ $$aWashington, DC$$bACS Publ.$$c2018
000857550 3367_ $$2DRIVER$$aarticle
000857550 3367_ $$2DataCite$$aOutput Types/Journal article
000857550 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544870829_31368
000857550 3367_ $$2BibTeX$$aARTICLE
000857550 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857550 3367_ $$00$$2EndNote$$aJournal Article
000857550 520__ $$aUnderstanding the general electronic principles underlying molecule–surface interactions at the nanoscale is crucial for revealing the processes based on chemisorption, like catalysis, surface ligation, surface fluorescence, etc. However, the electronic mechanisms of how surface states affect and even dominate the properties of nanomaterials have long remained unclear. Here, using one-unit-thin TiO2 nanosheet as a model surface platform, we find that surface ligands can competitively polarize and confine the valence 3d orbitals of surface Ti atoms from delocalized energy band states to localized chemisorption bonds, through probing the surface chemical interaction at the orbital level with near-edge X-ray absorption fine structure (NEXAFS). Such ligand-induced orbital redistributions, which are revealed by combining experimental discoveries, quantum calculations, and theoretical analysis, are cooperative with ligand coverages and can enhance the strength of chemisorption and ligation-induced surface effects on nanomaterials. The model and concept of nanoscale cooperative chemisorption reveal the general physical principle that drives the coverage-dependent ligand-induced surface effects on regulating the electronic structures, surface activity, optical properties, and chemisorption strength of nanomaterials.
000857550 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000857550 588__ $$aDataset connected to CrossRef
000857550 7001_ $$0P:(DE-HGF)0$$aTang, Yan$$b1
000857550 7001_ $$0P:(DE-Juel1)172733$$aLiu, Zigeng$$b2
000857550 7001_ $$0P:(DE-HGF)0$$aZhu, Wei$$b3
000857550 7001_ $$00000-0003-3628-5688$$aLiu, Haitao$$b4
000857550 7001_ $$0P:(DE-HGF)0$$aWang, Jiaou$$b5
000857550 7001_ $$00000-0003-2313-4741$$aZhong, Guiming$$b6
000857550 7001_ $$00000-0002-8456-3980$$aLi, Jun$$b7
000857550 7001_ $$00000-0002-8066-4450$$aWang, Xun$$b8$$eCorresponding author
000857550 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.8b03572$$gp. acs.nanolett.8b03572$$n12$$p7809-7815$$tNano letters$$v18$$x1530-6992$$y2018
000857550 8564_ $$uhttps://juser.fz-juelich.de/record/857550/files/acs.nanolett.8b03572.pdf$$yRestricted
000857550 8564_ $$uhttps://juser.fz-juelich.de/record/857550/files/acs.nanolett.8b03572.pdf?subformat=pdfa$$xpdfa$$yRestricted
000857550 909CO $$ooai:juser.fz-juelich.de:857550$$pVDB
000857550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172733$$aForschungszentrum Jülich$$b2$$kFZJ
000857550 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000857550 9141_ $$y2018
000857550 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857550 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857550 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857550 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2017
000857550 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857550 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857550 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857550 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857550 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857550 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857550 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857550 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2017
000857550 920__ $$lyes
000857550 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000857550 980__ $$ajournal
000857550 980__ $$aVDB
000857550 980__ $$aI:(DE-Juel1)IEK-9-20110218
000857550 980__ $$aUNRESTRICTED
000857550 981__ $$aI:(DE-Juel1)IET-1-20110218