Home > Publications database > Probing Ligand-Induced Cooperative Orbital Redistribution That Dominates Nanoscale Molecule–Surface Interactions with One-Unit-Thin TiO 2 Nanosheets > print |
001 | 857550 | ||
005 | 20240712112832.0 | ||
024 | 7 | _ | |a 10.1021/acs.nanolett.8b03572 |2 doi |
024 | 7 | _ | |a 1530-6984 |2 ISSN |
024 | 7 | _ | |a 1530-6992 |2 ISSN |
024 | 7 | _ | |a pmid:30407013 |2 pmid |
024 | 7 | _ | |a WOS:000453488800051 |2 WOS |
037 | _ | _ | |a FZJ-2018-06541 |
041 | _ | _ | |a English |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Xiang, Guolei |0 0000-0003-1221-1748 |b 0 |e Corresponding author |
245 | _ | _ | |a Probing Ligand-Induced Cooperative Orbital Redistribution That Dominates Nanoscale Molecule–Surface Interactions with One-Unit-Thin TiO 2 Nanosheets |
260 | _ | _ | |a Washington, DC |c 2018 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1544870829_31368 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Understanding the general electronic principles underlying molecule–surface interactions at the nanoscale is crucial for revealing the processes based on chemisorption, like catalysis, surface ligation, surface fluorescence, etc. However, the electronic mechanisms of how surface states affect and even dominate the properties of nanomaterials have long remained unclear. Here, using one-unit-thin TiO2 nanosheet as a model surface platform, we find that surface ligands can competitively polarize and confine the valence 3d orbitals of surface Ti atoms from delocalized energy band states to localized chemisorption bonds, through probing the surface chemical interaction at the orbital level with near-edge X-ray absorption fine structure (NEXAFS). Such ligand-induced orbital redistributions, which are revealed by combining experimental discoveries, quantum calculations, and theoretical analysis, are cooperative with ligand coverages and can enhance the strength of chemisorption and ligation-induced surface effects on nanomaterials. The model and concept of nanoscale cooperative chemisorption reveal the general physical principle that drives the coverage-dependent ligand-induced surface effects on regulating the electronic structures, surface activity, optical properties, and chemisorption strength of nanomaterials. |
536 | _ | _ | |a 135 - Fuel Cells (POF3-135) |0 G:(DE-HGF)POF3-135 |c POF3-135 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Tang, Yan |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Liu, Zigeng |0 P:(DE-Juel1)172733 |b 2 |
700 | 1 | _ | |a Zhu, Wei |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Liu, Haitao |0 0000-0003-3628-5688 |b 4 |
700 | 1 | _ | |a Wang, Jiaou |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Zhong, Guiming |0 0000-0003-2313-4741 |b 6 |
700 | 1 | _ | |a Li, Jun |0 0000-0002-8456-3980 |b 7 |
700 | 1 | _ | |a Wang, Xun |0 0000-0002-8066-4450 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.nanolett.8b03572 |g p. acs.nanolett.8b03572 |0 PERI:(DE-600)2048866-X |n 12 |p 7809-7815 |t Nano letters |v 18 |y 2018 |x 1530-6992 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857550/files/acs.nanolett.8b03572.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857550/files/acs.nanolett.8b03572.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:857550 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172733 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-135 |2 G:(DE-HGF)POF3-100 |v Fuel Cells |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO LETT : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NANO LETT : 2017 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|