001     857551
005     20240712112832.0
024 7 _ |a 10.1021/acs.jpca.8b04665
|2 doi
024 7 _ |a 1089-5639
|2 ISSN
024 7 _ |a 1520-5215
|2 ISSN
024 7 _ |a pmid:30222345
|2 pmid
024 7 _ |a WOS:000447471400006
|2 WOS
024 7 _ |a altmetric:49185901
|2 altmetric
037 _ _ |a FZJ-2018-06542
082 _ _ |a 530
100 1 _ |a Köcher, Simone S.
|0 P:(DE-Juel1)192562
|b 0
245 _ _ |a Ab Initio Simulation of pH-Sensitive Biomarkers in Magnetic Resonance Imaging
260 _ _ |a Washington, DC
|c 2018
|b Soc.66306
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542795772_5314
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An ab initio simulation scheme is introduced as a theoretical prescreening approach to facilitate and enhance the research for pH-sensitive biomarkers. The proton 1H and carbon 13C nuclear magnetic resonance (NMR) chemical shifts of the recently published marker for extracellular pH, [1,5–13C2]zymonic acid (ZA), and the as yet unpublished (Z)-4-methyl-2-oxopent-3-enedioic acid (OMPD) were calculated with ab initio methods as a function of the pH. The influence of the aqueous solvent was taken into account either by an implicit solvent model or by explicit water molecules, where the latter improved the accuracy of the calculated chemical shifts considerably. The theoretically predicted chemical shifts allowed for a reliable NMR peak assignment. The pKa value of the first deprotonation of ZA and OMPD was simulated successfully whereas the parametrization of the implicit solvent model does not allow for an accurate description of the second pKa. The theoretical models reproduce the pH-induced chemical shift changes and the first pKa with sufficient accuracy to establish the ab initio prescreening approach as a valuable support to guide the experimental search for pH-sensitive biomarkers.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Düwel, Stephan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hundshammer, Christian
|0 0000-0002-6738-1560
|b 2
700 1 _ |a Glaser, Steffen J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schilling, Franz
|0 0000-0001-5239-4628
|b 4
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 5
|u fzj
700 1 _ |a Scheurer, Christoph
|0 0000-0002-7227-8672
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.jpca.8b04665
|g Vol. 122, no. 40, p. 7983 - 7990
|0 PERI:(DE-600)2006031-2
|n 40
|p 7983 - 7990
|t The journal of physical chemistry / A A, Molecules, spectroscopy, kinetics, environment & general theory
|v 122
|y 2018
|x 1520-5215
856 4 _ |u https://juser.fz-juelich.de/record/857551/files/acs.jpca.8b04665.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/857551/files/acs.jpca.8b04665.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:857551
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192562
910 1 _ |a TU München
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)192562
910 1 _ |a TU München
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a TU München
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a TU München
|0 I:(DE-HGF)0
|b 4
|6 0000-0001-5239-4628
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)162401
910 1 _ |a TU München
|0 I:(DE-HGF)0
|b 6
|6 0000-0002-7227-8672
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM A : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21